1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
SUBROUTINE DTPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER N
DOUBLE PRECISION RCOND, RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION AINVP( * ), AP( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DTPT01 computes the residual for a triangular matrix A times its
* inverse when A is stored in packed format:
* RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The original upper or lower triangular matrix A, packed
* columnwise in a linear array. The j-th column of A is stored
* in the array AP as follows:
* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
* if UPLO = 'L',
* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*
* AINVP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* On entry, the (triangular) inverse of the matrix A, packed
* columnwise in a linear array as in AP.
* On exit, the contents of AINVP are destroyed.
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal condition number of A, computed as
* 1/(norm(A) * norm(AINV)).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESID (output) DOUBLE PRECISION
* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UNITD
INTEGER J, JC
DOUBLE PRECISION AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANTP
EXTERNAL LSAME, DLAMCH, DLANTP
* ..
* .. External Subroutines ..
EXTERNAL DTPMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = DLANTP( '1', UPLO, DIAG, N, AP, WORK )
AINVNM = DLANTP( '1', UPLO, DIAG, N, AINVP, WORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE / ANORM ) / AINVNM
*
* Compute A * AINV, overwriting AINV.
*
UNITD = LSAME( DIAG, 'U' )
IF( LSAME( UPLO, 'U' ) ) THEN
JC = 1
DO 10 J = 1, N
IF( UNITD )
$ AINVP( JC+J-1 ) = ONE
*
* Form the j-th column of A*AINV
*
CALL DTPMV( 'Upper', 'No transpose', DIAG, J, AP,
$ AINVP( JC ), 1 )
*
* Subtract 1 from the diagonal
*
AINVP( JC+J-1 ) = AINVP( JC+J-1 ) - ONE
JC = JC + J
10 CONTINUE
ELSE
JC = 1
DO 20 J = 1, N
IF( UNITD )
$ AINVP( JC ) = ONE
*
* Form the j-th column of A*AINV
*
CALL DTPMV( 'Lower', 'No transpose', DIAG, N-J+1, AP( JC ),
$ AINVP( JC ), 1 )
*
* Subtract 1 from the diagonal
*
AINVP( JC ) = AINVP( JC ) - ONE
JC = JC + N - J + 1
20 CONTINUE
END IF
*
* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = DLANTP( '1', UPLO, 'Non-unit', N, AINVP, WORK )
*
RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS
*
RETURN
*
* End of DTPT01
*
END
|