1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
SUBROUTINE DTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
$ TSCAL, X, LDX, B, LDB, WORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION RESID, SCALE, TSCAL
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * ), B( LDB, * ), CNORM( * ), WORK( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* DTPT03 computes the residual for the solution to a scaled triangular
* system of equations A*x = s*b or A'*x = s*b when the triangular
* matrix A is stored in packed format. Here A' is the transpose of A,
* s is a scalar, and x and b are N by NRHS matrices. The test ratio is
* the maximum over the number of right hand sides of
* norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
* where op(A) denotes A or A' and EPS is the machine epsilon.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': A *x = s*b (No transpose)
* = 'T': A'*x = s*b (Transpose)
* = 'C': A'*x = s*b (Conjugate transpose = Transpose)
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices X and B. NRHS >= 0.
*
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The upper or lower triangular matrix A, packed columnwise in
* a linear array. The j-th column of A is stored in the array
* AP as follows:
* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
* if UPLO = 'L',
* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*
* SCALE (input) DOUBLE PRECISION
* The scaling factor s used in solving the triangular system.
*
* CNORM (input) DOUBLE PRECISION array, dimension (N)
* The 1-norms of the columns of A, not counting the diagonal.
*
* TSCAL (input) DOUBLE PRECISION
* The scaling factor used in computing the 1-norms in CNORM.
* CNORM actually contains the column norms of TSCAL*A.
*
* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
* The computed solution vectors for the system of linear
* equations.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
* The right hand side vectors for the system of linear
* equations.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESID (output) DOUBLE PRECISION
* The maximum over the number of right hand sides of
* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER IX, J, JJ
DOUBLE PRECISION BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, IDAMAX, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DLABAD, DSCAL, DTPMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
EPS = DLAMCH( 'Epsilon' )
SMLNUM = DLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Compute the norm of the triangular matrix A using the column
* norms already computed by DLATPS.
*
TNORM = ZERO
IF( LSAME( DIAG, 'N' ) ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
JJ = 1
DO 10 J = 1, N
TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
JJ = JJ + J + 1
10 CONTINUE
ELSE
JJ = 1
DO 20 J = 1, N
TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
JJ = JJ + N - J + 1
20 CONTINUE
END IF
ELSE
DO 30 J = 1, N
TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
30 CONTINUE
END IF
*
* Compute the maximum over the number of right hand sides of
* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*
RESID = ZERO
DO 40 J = 1, NRHS
CALL DCOPY( N, X( 1, J ), 1, WORK, 1 )
IX = IDAMAX( N, WORK, 1 )
XNORM = MAX( ONE, ABS( X( IX, J ) ) )
XSCAL = ( ONE / XNORM ) / DBLE( N )
CALL DSCAL( N, XSCAL, WORK, 1 )
CALL DTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
CALL DAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
IX = IDAMAX( N, WORK, 1 )
ERR = TSCAL*ABS( WORK( IX ) )
IX = IDAMAX( N, X( 1, J ), 1 )
XNORM = ABS( X( IX, J ) )
IF( ERR*SMLNUM.LE.XNORM ) THEN
IF( XNORM.GT.ZERO )
$ ERR = ERR / XNORM
ELSE
IF( ERR.GT.ZERO )
$ ERR = ONE / EPS
END IF
IF( ERR*SMLNUM.LE.TNORM ) THEN
IF( TNORM.GT.ZERO )
$ ERR = ERR / TNORM
ELSE
IF( ERR.GT.ZERO )
$ ERR = ONE / EPS
END IF
RESID = MAX( RESID, ERR )
40 CONTINUE
*
RETURN
*
* End of DTPT03
*
END
|