File: sgeqls.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (122 lines) | stat: -rw-r--r-- 3,371 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
      SUBROUTINE SGEQLS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  Solve the least squares problem
*      min || A*X - B ||
*  using the QL factorization
*      A = Q*L
*  computed by SGEQLF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  M >= N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B.  NRHS >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          Details of the QL factorization of the original matrix A as
*          returned by SGEQLF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= M.
*
*  TAU     (input) REAL array, dimension (N)
*          Details of the orthogonal matrix Q.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the m-by-nrhs right hand side matrix B.
*          On exit, the n-by-nrhs solution matrix X, stored in rows
*          m-n+1:m.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= M.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK must be at least NRHS,
*          and should be at least NRHS*NB, where NB is the block size
*          for this environment.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORMQL, STRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
     $          THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGEQLS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     B := Q' * B
*
      CALL SORMQL( 'Left', 'Transpose', M, NRHS, N, A, LDA, TAU, B, LDB,
     $             WORK, LWORK, INFO )
*
*     Solve L*X = B(m-n+1:m,:)
*
      CALL STRSM( 'Left', 'Lower', 'No transpose', 'Non-unit', N, NRHS,
     $            ONE, A( M-N+1, 1 ), LDA, B( M-N+1, 1 ), LDB )
*
      RETURN
*
*     End of SGEQLS
*
      END