File: stzt01.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (124 lines) | stat: -rw-r--r-- 3,267 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
      REAL             FUNCTION STZT01( M, N, A, AF, LDA, TAU, WORK,
     $                 LWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  STZT01 returns
*       || A - R*Q || / ( M * eps * ||A|| )
*  for an upper trapezoidal A that was factored with STZRQF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrices A and AF.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and AF.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The original upper trapezoidal M by N matrix A.
*
*  AF      (input) REAL array, dimension (LDA,N)
*          The output of STZRQF for input matrix A.
*          The lower triangle is not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A and AF.
*
*  TAU     (input) REAL array, dimension (M)
*          Details of the  Householder transformations as returned by
*          STZRQF.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= m*n + m.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               NORMA
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 1 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE
      EXTERNAL           SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SLATZM, SLASET, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, REAL
*     ..
*     .. Executable Statements ..
*
      STZT01 = ZERO
*
      IF( LWORK.LT.M*N+M ) THEN
         CALL XERBLA( 'STZT01', 8 )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK )
*
*     Copy upper triangle R
*
      CALL SLASET( 'Full', M, N, ZERO, ZERO, WORK, M )
      DO 20 J = 1, M
         DO 10 I = 1, J
            WORK( ( J-1 )*M+I ) = AF( I, J )
   10    CONTINUE
   20 CONTINUE
*
*     R = R * P(1) * ... *P(m)
*
      DO 30 I = 1, M
         CALL SLATZM( 'Right', I, N-M+1, AF( I, M+1 ), LDA, TAU( I ),
     $                WORK( ( I-1 )*M+1 ), WORK( M*M+1 ), M,
     $                WORK( M*N+1 ) )
   30 CONTINUE
*
*     R = R - A
*
      DO 40 I = 1, N
         CALL SAXPY( M, -ONE, A( 1, I ), 1, WORK( ( I-1 )*M+1 ), 1 )
   40 CONTINUE
*
      STZT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK )
*
      STZT01 = STZT01 / ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
      IF( NORMA.NE.ZERO )
     $   STZT01 = STZT01 / NORMA
*
      RETURN
*
*     End of STZT01
*
      END