| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 
 |       SUBROUTINE ZLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
     $                   INFO )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*     ZLAVSP  performs one of the matrix-vector operations
*        x := A*x  or  x := A^T*x,
*     where x is an N element vector and  A is one of the factors
*     from the symmetric factorization computed by ZSPTRF.
*     ZSPTRF produces a factorization of the form
*          U * D * U^T     or     L * D * L^T,
*     where U (or L) is a product of permutation and unit upper (lower)
*     triangular matrices, U^T (or L^T) is the transpose of
*     U (or L), and D is symmetric and block diagonal with 1 x 1 and
*     2 x 2 diagonal blocks.  The multipliers for the transformations
*     and the upper or lower triangular parts of the diagonal blocks
*     are stored columnwise in packed format in the linear array A.
*
*     If TRANS = 'N' or 'n', ZLAVSP multiplies either by U or U * D
*     (or L or L * D).
*     If TRANS = 'C' or 'c', ZLAVSP multiplies either by U^T or D * U^T
*     (or L^T or D * L^T ).
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1
*           On entry, UPLO specifies whether the triangular matrix
*           stored in A is upper or lower triangular.
*              UPLO = 'U' or 'u'   The matrix is upper triangular.
*              UPLO = 'L' or 'l'   The matrix is lower triangular.
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*              TRANS = 'N' or 'n'   x := A*x.
*              TRANS = 'T' or 't'   x := A^T*x.
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1
*           On entry, DIAG specifies whether the diagonal blocks are
*           assumed to be unit matrices, as follows:
*              DIAG = 'U' or 'u'   Diagonal blocks are unit matrices.
*              DIAG = 'N' or 'n'   Diagonal blocks are non-unit.
*           Unchanged on exit.
*
*  N      - INTEGER
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  NRHS   - INTEGER
*           On entry, NRHS specifies the number of right hand sides,
*           i.e., the number of vectors x to be multiplied by A.
*           NRHS must be at least zero.
*           Unchanged on exit.
*
*  A      - COMPLEX*16 array, dimension( N*(N+1)/2 )
*           On entry, A contains a block diagonal matrix and the
*           multipliers of the transformations used to obtain it,
*           stored as a packed triangular matrix.
*           Unchanged on exit.
*
*  IPIV   - INTEGER array, dimension( N )
*           On entry, IPIV contains the vector of pivot indices as
*           determined by ZSPTRF.
*           If IPIV( K ) = K, no interchange was done.
*           If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
*           changed with row IPIV( K ) and a 1 x 1 pivot block was used.
*           If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
*           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
*           If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
*           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
*
*  B      - COMPLEX*16 array, dimension( LDB, NRHS )
*           On entry, B contains NRHS vectors of length N.
*           On exit, B is overwritten with the product A * B.
*
*  LDB    - INTEGER
*           On entry, LDB contains the leading dimension of B as
*           declared in the calling program.  LDB must be at least
*           max( 1, N ).
*           Unchanged on exit.
*
*  INFO   - INTEGER
*           INFO is the error flag.
*           On exit, a value of 0 indicates a successful exit.
*           A negative value, say -K, indicates that the K-th argument
*           has an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT
      INTEGER            J, K, KC, KCNEXT, KP
      COMPLEX*16         D11, D12, D21, D22, T1, T2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
     $          THEN
         INFO = -2
      ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
     $          THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLAVSP ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
      NOUNIT = LSAME( DIAG, 'N' )
*------------------------------------------
*
*     Compute  B := A * B  (No transpose)
*
*------------------------------------------
      IF( LSAME( TRANS, 'N' ) ) THEN
*
*        Compute  B := U*B
*        where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Loop forward applying the transformations.
*
            K = 1
            KC = 1
   10       CONTINUE
            IF( K.GT.N )
     $         GO TO 30
*
*           1 x 1 pivot block
*
            IF( IPIV( K ).GT.0 ) THEN
*
*              Multiply by the diagonal element if forming U * D.
*
               IF( NOUNIT )
     $            CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
*
*              Multiply by P(K) * inv(U(K))  if K > 1.
*
               IF( K.GT.1 ) THEN
*
*                 Apply the transformation.
*
                  CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
     $                        LDB, B( 1, 1 ), LDB )
*
*                 Interchange if P(K) != I.
*
                  KP = IPIV( K )
                  IF( KP.NE.K )
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               KC = KC + K
               K = K + 1
            ELSE
*
*              2 x 2 pivot block
*
               KCNEXT = KC + K
*
*              Multiply by the diagonal block if forming U * D.
*
               IF( NOUNIT ) THEN
                  D11 = A( KCNEXT-1 )
                  D22 = A( KCNEXT+K )
                  D12 = A( KCNEXT+K-1 )
                  D21 = D12
                  DO 20 J = 1, NRHS
                     T1 = B( K, J )
                     T2 = B( K+1, J )
                     B( K, J ) = D11*T1 + D12*T2
                     B( K+1, J ) = D21*T1 + D22*T2
   20             CONTINUE
               END IF
*
*              Multiply by  P(K) * inv(U(K))  if K > 1.
*
               IF( K.GT.1 ) THEN
*
*                 Apply the transformations.
*
                  CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
     $                        LDB, B( 1, 1 ), LDB )
                  CALL ZGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
     $                        B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
*
*                 Interchange if P(K) != I.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K )
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               KC = KCNEXT + K + 1
               K = K + 2
            END IF
            GO TO 10
   30       CONTINUE
*
*        Compute  B := L*B
*        where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
*
         ELSE
*
*           Loop backward applying the transformations to B.
*
            K = N
            KC = N*( N+1 ) / 2 + 1
   40       CONTINUE
            IF( K.LT.1 )
     $         GO TO 60
            KC = KC - ( N-K+1 )
*
*           Test the pivot index.  If greater than zero, a 1 x 1
*           pivot was used, otherwise a 2 x 2 pivot was used.
*
            IF( IPIV( K ).GT.0 ) THEN
*
*              1 x 1 pivot block:
*
*              Multiply by the diagonal element if forming L * D.
*
               IF( NOUNIT )
     $            CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
*
*              Multiply by  P(K) * inv(L(K))  if K < N.
*
               IF( K.NE.N ) THEN
                  KP = IPIV( K )
*
*                 Apply the transformation.
*
                  CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
     $                        LDB, B( K+1, 1 ), LDB )
*
*                 Interchange if a permutation was applied at the
*                 K-th step of the factorization.
*
                  IF( KP.NE.K )
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               K = K - 1
*
            ELSE
*
*              2 x 2 pivot block:
*
               KCNEXT = KC - ( N-K+2 )
*
*              Multiply by the diagonal block if forming L * D.
*
               IF( NOUNIT ) THEN
                  D11 = A( KCNEXT )
                  D22 = A( KC )
                  D21 = A( KCNEXT+1 )
                  D12 = D21
                  DO 50 J = 1, NRHS
                     T1 = B( K-1, J )
                     T2 = B( K, J )
                     B( K-1, J ) = D11*T1 + D12*T2
                     B( K, J ) = D21*T1 + D22*T2
   50             CONTINUE
               END IF
*
*              Multiply by  P(K) * inv(L(K))  if K < N.
*
               IF( K.NE.N ) THEN
*
*                 Apply the transformation.
*
                  CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
     $                        LDB, B( K+1, 1 ), LDB )
                  CALL ZGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
     $                        B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
*
*                 Interchange if a permutation was applied at the
*                 K-th step of the factorization.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K )
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               KC = KCNEXT
               K = K - 2
            END IF
            GO TO 40
   60       CONTINUE
         END IF
*-------------------------------------------------
*
*     Compute  B := A^T * B  (transpose)
*
*-------------------------------------------------
      ELSE
*
*        Form  B := U^T*B
*        where U  = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
*        and   U^T = inv(U^T(1))*P(1)* ... *inv(U^T(m))*P(m)
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Loop backward applying the transformations.
*
            K = N
            KC = N*( N+1 ) / 2 + 1
   70       CONTINUE
            IF( K.LT.1 )
     $         GO TO 90
            KC = KC - K
*
*           1 x 1 pivot block.
*
            IF( IPIV( K ).GT.0 ) THEN
               IF( K.GT.1 ) THEN
*
*                 Interchange if P(K) != I.
*
                  KP = IPIV( K )
                  IF( KP.NE.K )
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
*                 Apply the transformation:
*                    y := y - B' * conjg(x)
*                 where x is a column of A and y is a row of B.
*
                  CALL ZGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
               END IF
               IF( NOUNIT )
     $            CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
               K = K - 1
*
*           2 x 2 pivot block.
*
            ELSE
               KCNEXT = KC - ( K-1 )
               IF( K.GT.2 ) THEN
*
*                 Interchange if P(K) != I.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K-1 )
     $               CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
     $                           LDB )
*
*                 Apply the transformations.
*
                  CALL ZGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
*
                  CALL ZGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
     $                        A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
               END IF
*
*              Multiply by the diagonal block if non-unit.
*
               IF( NOUNIT ) THEN
                  D11 = A( KC-1 )
                  D22 = A( KC+K-1 )
                  D12 = A( KC+K-2 )
                  D21 = D12
                  DO 80 J = 1, NRHS
                     T1 = B( K-1, J )
                     T2 = B( K, J )
                     B( K-1, J ) = D11*T1 + D12*T2
                     B( K, J ) = D21*T1 + D22*T2
   80             CONTINUE
               END IF
               KC = KCNEXT
               K = K - 2
            END IF
            GO TO 70
   90       CONTINUE
*
*        Form  B := L^T*B
*        where L  = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
*        and   L^T = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
*
         ELSE
*
*           Loop forward applying the L-transformations.
*
            K = 1
            KC = 1
  100       CONTINUE
            IF( K.GT.N )
     $         GO TO 120
*
*           1 x 1 pivot block
*
            IF( IPIV( K ).GT.0 ) THEN
               IF( K.LT.N ) THEN
*
*                 Interchange if P(K) != I.
*
                  KP = IPIV( K )
                  IF( KP.NE.K )
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
*                 Apply the transformation
*
                  CALL ZGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
     $                        LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
               END IF
               IF( NOUNIT )
     $            CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
               KC = KC + N - K + 1
               K = K + 1
*
*           2 x 2 pivot block.
*
            ELSE
               KCNEXT = KC + N - K + 1
               IF( K.LT.N-1 ) THEN
*
*              Interchange if P(K) != I.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K+1 )
     $               CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
     $                           LDB )
*
*                 Apply the transformation
*
                  CALL ZGEMV( 'Transpose', N-K-1, NRHS, ONE,
     $                        B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
     $                        B( K+1, 1 ), LDB )
*
                  CALL ZGEMV( 'Transpose', N-K-1, NRHS, ONE,
     $                        B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
     $                        B( K, 1 ), LDB )
               END IF
*
*              Multiply by the diagonal block if non-unit.
*
               IF( NOUNIT ) THEN
                  D11 = A( KC )
                  D22 = A( KCNEXT )
                  D21 = A( KC+1 )
                  D12 = D21
                  DO 110 J = 1, NRHS
                     T1 = B( K, J )
                     T2 = B( K+1, J )
                     B( K, J ) = D11*T1 + D12*T2
                     B( K+1, J ) = D21*T1 + D22*T2
  110             CONTINUE
               END IF
               KC = KCNEXT + ( N-K )
               K = K + 2
            END IF
            GO TO 100
  120       CONTINUE
         END IF
*
      END IF
      RETURN
*
*     End of ZLAVSP
*
      END
 |