1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
SUBROUTINE ZPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
$ RWORK, RCOND, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAINV, LDWORK, N
DOUBLE PRECISION RCOND, RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), AINV( LDAINV, * ),
$ WORK( LDWORK, * )
* ..
*
* Purpose
* =======
*
* ZPOT03 computes the residual for a Hermitian matrix times its
* inverse:
* norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) COMPLEX*16 array, dimension (LDA,N)
* The original Hermitian matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N)
*
* AINV (input/output) COMPLEX*16 array, dimension (LDAINV,N)
* On entry, the inverse of the matrix A, stored as a Hermitian
* matrix in the same format as A.
* In this version, AINV is expanded into a full matrix and
* multiplied by A, so the opposing triangle of AINV will be
* changed; i.e., if the upper triangular part of AINV is
* stored, the lower triangular part will be used as work space.
*
* LDAINV (input) INTEGER
* The leading dimension of the array AINV. LDAINV >= max(1,N).
*
* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N)
*
* LDWORK (input) INTEGER
* The leading dimension of the array WORK. LDWORK >= max(1,N).
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal of the condition number of A, computed as
* ( 1/norm(A) ) / norm(AINV).
*
* RESID (output) DOUBLE PRECISION
* norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZHEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCONJG
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
AINVNM = ZLANHE( '1', UPLO, N, AINV, LDAINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE / ANORM ) / AINVNM
*
* Expand AINV into a full matrix and call ZHEMM to multiply
* AINV on the left by A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = 1, J - 1
AINV( J, I ) = DCONJG( AINV( I, J ) )
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = J + 1, N
AINV( J, I ) = DCONJG( AINV( I, J ) )
30 CONTINUE
40 CONTINUE
END IF
CALL ZHEMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV,
$ CZERO, WORK, LDWORK )
*
* Add the identity matrix to WORK .
*
DO 50 I = 1, N
WORK( I, I ) = WORK( I, I ) + CONE
50 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
*
RETURN
*
* End of ZPOT03
*
END
|