File: zqpt01.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (141 lines) | stat: -rw-r--r-- 4,182 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      DOUBLE PRECISION FUNCTION ZQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
     $                 WORK, LWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZQPT01 tests the QR-factorization with pivoting of a matrix A.  The
*  array AF contains the (possibly partial) QR-factorization of A, where
*  the upper triangle of AF(1:k,1:k) is a partial triangular factor,
*  the entries below the diagonal in the first k columns are the
*  Householder vectors, and the rest of AF contains a partially updated
*  matrix.
*
*  This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrices A and AF.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and AF.
*
*  K       (input) INTEGER
*          The number of columns of AF that have been reduced
*          to upper triangular form.
*
*  A       (input) COMPLEX*16 array, dimension (LDA, N)
*          The original matrix A.
*
*  AF      (input) COMPLEX*16 array, dimension (LDA,N)
*          The (possibly partial) output of ZGEQPF.  The upper triangle
*          of AF(1:k,1:k) is a partial triangular factor, the entries
*          below the diagonal in the first k columns are the Householder
*          vectors, and the rest of AF contains a partially updated
*          matrix.
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A and AF.
*
*  TAU     (input) COMPLEX*16 array, dimension (K)
*          Details of the Householder transformations as returned by
*          ZGEQPF.
*
*  JPVT    (input) INTEGER array, dimension (N)
*          Pivot information as returned by ZGEQPF.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= M*N+N.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   NORMA
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RWORK( 1 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZUNMQR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      ZQPT01 = ZERO
*
*     Test if there is enough workspace
*
      IF( LWORK.LT.M*N+N ) THEN
         CALL XERBLA( 'ZQPT01', 10 )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      NORMA = ZLANGE( 'One-norm', M, N, A, LDA, RWORK )
*
      DO 30 J = 1, K
         DO 10 I = 1, MIN( J, M )
            WORK( ( J-1 )*M+I ) = AF( I, J )
   10    CONTINUE
         DO 20 I = J + 1, M
            WORK( ( J-1 )*M+I ) = ZERO
   20    CONTINUE
   30 CONTINUE
      DO 40 J = K + 1, N
         CALL ZCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 )
   40 CONTINUE
*
      CALL ZUNMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK,
     $             M, WORK( M*N+1 ), LWORK-M*N, INFO )
*
      DO 50 J = 1, N
*
*        Compare i-th column of QR and jpvt(i)-th column of A
*
         CALL ZAXPY( M, DCMPLX( -ONE ), A( 1, JPVT( J ) ), 1,
     $               WORK( ( J-1 )*M+1 ), 1 )
   50 CONTINUE
*
      ZQPT01 = ZLANGE( 'One-norm', M, N, WORK, M, RWORK ) /
     $         ( DBLE( MAX( M, N ) )*DLAMCH( 'Epsilon' ) )
      IF( NORMA.NE.ZERO )
     $   ZQPT01 = ZQPT01 / NORMA
*
      RETURN
*
*     End of ZQPT01
*
      END