| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 
 |       SUBROUTINE ZQRT16( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDA, LDB, LDX, M, N, NRHS
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  ZQRT16 computes the residual for a solution of a system of linear
*  equations  A*x = b  or  A'*x = b:
*     RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          Specifies the form of the system of equations:
*          = 'N':  A *x = b
*          = 'T':  A^T*x = b, where A^T is the transpose of A
*          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B, the matrix of right hand sides.
*          NRHS >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The original M x N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  If TRANS = 'N',
*          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*
*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the system of
*          linear equations.
*          On exit, B is overwritten with the difference B - A*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  IF TRANS = 'N',
*          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESID   (output) DOUBLE PRECISION
*          The maximum over the number of right hand sides of
*          norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J, N1, N2
      DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DZASUM, ZLANGE
      EXTERNAL           LSAME, DLAMCH, DZASUM, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0 or NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         ANORM = ZLANGE( 'I', M, N, A, LDA, RWORK )
         N1 = N
         N2 = M
      ELSE
         ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
         N1 = M
         N2 = N
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Compute  B - A*X  (or  B - A'*X ) and store in B.
*
      CALL ZGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, LDA, X,
     $            LDX, CONE, B, LDB )
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ) .
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         BNORM = DZASUM( N1, B( 1, J ), 1 )
         XNORM = DZASUM( N2, X( 1, J ), 1 )
         IF( ANORM.EQ.ZERO .AND. BNORM.EQ.ZERO ) THEN
            RESID = ZERO
         ELSE IF( ANORM.LE.ZERO .OR. XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) /
     $              ( MAX( M, N )*EPS ) )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of ZQRT16
*
      END
 |