1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
SUBROUTINE ZTPT02( UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB,
$ WORK, RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
* ..
*
* Purpose
* =======
*
* ZTPT02 computes the residual for the computed solution to a
* triangular system of linear equations A*x = b, A**T *x = b, or
* A**H *x = b, when the triangular matrix A is stored in packed format.
* Here A**T denotes the transpose of A, A**H denotes the conjugate
* transpose of A, and x and b are N by NRHS matrices. The test ratio
* is the maximum over the number of right hand sides of
* the maximum over the number of right hand sides of
* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': A *x = b (No transpose)
* = 'T': A**T *x = b (Transpose)
* = 'C': A**H *x = b (Conjugate transpose)
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices X and B. NRHS >= 0.
*
* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
* The upper or lower triangular matrix A, packed columnwise in
* a linear array. The j-th column of A is stored in the array
* AP as follows:
* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
* if UPLO = 'L',
* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*
* X (input) COMPLEX*16 array, dimension (LDX,NRHS)
* The computed solution vectors for the system of linear
* equations.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* B (input) COMPLEX*16 array, dimension (LDB,NRHS)
* The right hand side vectors for the system of linear
* equations.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* WORK (workspace) COMPLEX*16 array, dimension (N)
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESID (output) DOUBLE PRECISION
* The maximum over the number of right hand sides of
* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J
DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DZASUM, ZLANTP
EXTERNAL LSAME, DLAMCH, DZASUM, ZLANTP
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZCOPY, ZTPMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Compute the 1-norm of A or A**H.
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = ZLANTP( '1', UPLO, DIAG, N, AP, RWORK )
ELSE
ANORM = ZLANTP( 'I', UPLO, DIAG, N, AP, RWORK )
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the maximum over the number of right hand sides of
* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*
RESID = ZERO
DO 10 J = 1, NRHS
CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
CALL ZTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
CALL ZAXPY( N, DCMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
BNORM = DZASUM( N, WORK, 1 )
XNORM = DZASUM( N, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
10 CONTINUE
*
RETURN
*
* End of ZTPT02
*
END
|