1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  
     | 
    
            SUBROUTINE ZTRT02( UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B,
     $                   LDB, WORK, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            LDA, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  ZTRT02 computes the residual for the computed solution to a
*  triangular system of linear equations  A*x = b,  A**T *x = b,
*  or A**H *x = b.  Here A is a triangular matrix, A**T is the transpose
*  of A, A**H is the conjugate transpose of A, and x and b are N by NRHS
*  matrices.  The test ratio is the maximum over the number of right
*  hand sides of
*     norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
*  where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  A *x = b     (No transpose)
*          = 'T':  A**T *x = b  (Transpose)
*          = 'C':  A**H *x = b  (Conjugate transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices X and B.  NRHS >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The triangular matrix A.  If UPLO = 'U', the leading n by n
*          upper triangular part of the array A contains the upper
*          triangular matrix, and the strictly lower triangular part of
*          A is not referenced.  If UPLO = 'L', the leading n by n lower
*          triangular part of the array A contains the lower triangular
*          matrix, and the strictly upper triangular part of A is not
*          referenced.  If DIAG = 'U', the diagonal elements of A are
*          also not referenced and are assumed to be 1.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
*          The right hand side vectors for the system of linear
*          equations.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (N)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESID   (output) DOUBLE PRECISION
*          The maximum over the number of right hand sides of
*          norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DZASUM, ZLANTR
      EXTERNAL           LSAME, DLAMCH, DZASUM, ZLANTR
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZCOPY, ZTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute the 1-norm of A or A**H.
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         ANORM = ZLANTR( '1', UPLO, DIAG, N, N, A, LDA, RWORK )
      ELSE
         ANORM = ZLANTR( 'I', UPLO, DIAG, N, N, A, LDA, RWORK )
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS )
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
         CALL ZTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
         CALL ZAXPY( N, DCMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
         BNORM = DZASUM( N, WORK, 1 )
         XNORM = DZASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of ZTRT02
*
      END
 
     |