1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  
     | 
    
            SUBROUTINE SLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
     $                   QBLCKB )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
     $                   PRTYPE, QBLCKA, QBLCKB
      REAL               ALPHA
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
     $                   L( LDL, * ), R( LDR, * )
*     ..
*
*  Purpose
*  =======
*
*  SLATM5 generates matrices involved in the Generalized Sylvester
*  equation:
*
*      A * R - L * B = C
*      D * R - L * E = F
*
*  They also satisfy (the diagonalization condition)
*
*   [ I -L ] ( [ A  -C ], [ D -F ] ) [ I  R ] = ( [ A    ], [ D    ] )
*   [    I ] ( [     B ]  [    E ] ) [    I ]   ( [    B ]  [    E ] )
*
*
*  Arguments
*  =========
*
*  PRTYPE  (input) INTEGER
*          "Points" to a certian type of the matrices to generate
*          (see futher details).
*
*  M       (input) INTEGER
*          Specifies the order of A and D and the number of rows in
*          C, F,  R and L.
*
*  N       (input) INTEGER
*          Specifies the order of B and E and the number of columns in
*          C, F, R and L.
*
*  A       (output) REAL array, dimension (LDA, M).
*          On exit A M-by-M is initialized according to PRTYPE.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.
*
*  B       (output) REAL array, dimension (LDB, N).
*          On exit B N-by-N is initialized according to PRTYPE.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.
*
*  C       (output) REAL array, dimension (LDC, N).
*          On exit C M-by-N is initialized according to PRTYPE.
*
*  LDC     (input) INTEGER
*          The leading dimension of C.
*
*  D       (output) REAL array, dimension (LDD, M).
*          On exit D M-by-M is initialized according to PRTYPE.
*
*  LDD     (input) INTEGER
*          The leading dimension of D.
*
*  E       (output) REAL array, dimension (LDE, N).
*          On exit E N-by-N is initialized according to PRTYPE.
*
*  LDE     (input) INTEGER
*          The leading dimension of E.
*
*  F       (output) REAL array, dimension (LDF, N).
*          On exit F M-by-N is initialized according to PRTYPE.
*
*  LDF     (input) INTEGER
*          The leading dimension of F.
*
*  R       (output) REAL array, dimension (LDR, N).
*          On exit R M-by-N is initialized according to PRTYPE.
*
*  LDR     (input) INTEGER
*          The leading dimension of R.
*
*  L       (output) REAL array, dimension (LDL, N).
*          On exit L M-by-N is initialized according to PRTYPE.
*
*  LDL     (input) INTEGER
*          The leading dimension of L.
*
*  ALPHA   (input) REAL
*          Parameter used in generating PRTYPE = 1 and 5 matrices.
*
*  QBLCKA  (input) INTEGER
*          When PRTYPE = 3, specifies the distance between 2-by-2
*          blocks on the diagonal in A. Otherwise, QBLCKA is not
*          referenced. QBLCKA > 1.
*
*  QBLCKB  (input) INTEGER
*          When PRTYPE = 3, specifies the distance between 2-by-2
*          blocks on the diagonal in B. Otherwise, QBLCKB is not
*          referenced. QBLCKB > 1.
*
*
*  Further Details
*  ===============
*
*  PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices
*
*             A : if (i == j) then A(i, j) = 1.0
*                 if (j == i + 1) then A(i, j) = -1.0
*                 else A(i, j) = 0.0,            i, j = 1...M
*
*             B : if (i == j) then B(i, j) = 1.0 - ALPHA
*                 if (j == i + 1) then B(i, j) = 1.0
*                 else B(i, j) = 0.0,            i, j = 1...N
*
*             D : if (i == j) then D(i, j) = 1.0
*                 else D(i, j) = 0.0,            i, j = 1...M
*
*             E : if (i == j) then E(i, j) = 1.0
*                 else E(i, j) = 0.0,            i, j = 1...N
*
*             L =  R are chosen from [-10...10],
*                  which specifies the right hand sides (C, F).
*
*  PRTYPE = 2 or 3: Triangular and/or quasi- triangular.
*
*             A : if (i <= j) then A(i, j) = [-1...1]
*                 else A(i, j) = 0.0,             i, j = 1...M
*
*                 if (PRTYPE = 3) then
*                    A(k + 1, k + 1) = A(k, k)
*                    A(k + 1, k) = [-1...1]
*                    sign(A(k, k + 1) = -(sin(A(k + 1, k))
*                        k = 1, M - 1, QBLCKA
*
*             B : if (i <= j) then B(i, j) = [-1...1]
*                 else B(i, j) = 0.0,            i, j = 1...N
*
*                 if (PRTYPE = 3) then
*                    B(k + 1, k + 1) = B(k, k)
*                    B(k + 1, k) = [-1...1]
*                    sign(B(k, k + 1) = -(sign(B(k + 1, k))
*                        k = 1, N - 1, QBLCKB
*
*             D : if (i <= j) then D(i, j) = [-1...1].
*                 else D(i, j) = 0.0,            i, j = 1...M
*
*
*             E : if (i <= j) then D(i, j) = [-1...1]
*                 else E(i, j) = 0.0,            i, j = 1...N
*
*                 L, R are chosen from [-10...10],
*                 which specifies the right hand sides (C, F).
*
*  PRTYPE = 4 Full
*             A(i, j) = [-10...10]
*             D(i, j) = [-1...1]    i,j = 1...M
*             B(i, j) = [-10...10]
*             E(i, j) = [-1...1]    i,j = 1...N
*             R(i, j) = [-10...10]
*             L(i, j) = [-1...1]    i = 1..M ,j = 1...N
*
*             L, R specifies the right hand sides (C, F).
*
*  PRTYPE = 5 special case common and/or close eigs.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, TWENTY, HALF, TWO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0, TWENTY = 2.0E+1,
     $                   HALF = 0.5E+0, TWO = 2.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      REAL               IMEPS, REEPS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD, REAL, SIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM
*     ..
*     .. Executable Statements ..
*
      IF( PRTYPE.EQ.1 ) THEN
         DO 20 I = 1, M
            DO 10 J = 1, M
               IF( I.EQ.J ) THEN
                  A( I, J ) = ONE
                  D( I, J ) = ONE
               ELSE IF( I.EQ.J-1 ) THEN
                  A( I, J ) = -ONE
                  D( I, J ) = ZERO
               ELSE
                  A( I, J ) = ZERO
                  D( I, J ) = ZERO
               END IF
   10       CONTINUE
   20    CONTINUE
*
         DO 40 I = 1, N
            DO 30 J = 1, N
               IF( I.EQ.J ) THEN
                  B( I, J ) = ONE - ALPHA
                  E( I, J ) = ONE
               ELSE IF( I.EQ.J-1 ) THEN
                  B( I, J ) = ONE
                  E( I, J ) = ZERO
               ELSE
                  B( I, J ) = ZERO
                  E( I, J ) = ZERO
               END IF
   30       CONTINUE
   40    CONTINUE
*
         DO 60 I = 1, M
            DO 50 J = 1, N
               R( I, J ) = ( HALF-SIN( REAL( I / J ) ) )*TWENTY
               L( I, J ) = R( I, J )
   50       CONTINUE
   60    CONTINUE
*
      ELSE IF( PRTYPE.EQ.2 .OR. PRTYPE.EQ.3 ) THEN
         DO 80 I = 1, M
            DO 70 J = 1, M
               IF( I.LE.J ) THEN
                  A( I, J ) = ( HALF-SIN( REAL( I ) ) )*TWO
                  D( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWO
               ELSE
                  A( I, J ) = ZERO
                  D( I, J ) = ZERO
               END IF
   70       CONTINUE
   80    CONTINUE
*
         DO 100 I = 1, N
            DO 90 J = 1, N
               IF( I.LE.J ) THEN
                  B( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWO
                  E( I, J ) = ( HALF-SIN( REAL( J ) ) )*TWO
               ELSE
                  B( I, J ) = ZERO
                  E( I, J ) = ZERO
               END IF
   90       CONTINUE
  100    CONTINUE
*
         DO 120 I = 1, M
            DO 110 J = 1, N
               R( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWENTY
               L( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWENTY
  110       CONTINUE
  120    CONTINUE
*
         IF( PRTYPE.EQ.3 ) THEN
            IF( QBLCKA.LE.1 )
     $         QBLCKA = 2
            DO 130 K = 1, M - 1, QBLCKA
               A( K+1, K+1 ) = A( K, K )
               A( K+1, K ) = -SIN( A( K, K+1 ) )
  130       CONTINUE
*
            IF( QBLCKB.LE.1 )
     $         QBLCKB = 2
            DO 140 K = 1, N - 1, QBLCKB
               B( K+1, K+1 ) = B( K, K )
               B( K+1, K ) = -SIN( B( K, K+1 ) )
  140       CONTINUE
         END IF
*
      ELSE IF( PRTYPE.EQ.4 ) THEN
         DO 160 I = 1, M
            DO 150 J = 1, M
               A( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWENTY
               D( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWO
  150       CONTINUE
  160    CONTINUE
*
         DO 180 I = 1, N
            DO 170 J = 1, N
               B( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWENTY
               E( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWO
  170       CONTINUE
  180    CONTINUE
*
         DO 200 I = 1, M
            DO 190 J = 1, N
               R( I, J ) = ( HALF-SIN( REAL( J / I ) ) )*TWENTY
               L( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWO
  190       CONTINUE
  200    CONTINUE
*
      ELSE IF( PRTYPE.GE.5 ) THEN
         REEPS = HALF*TWO*TWENTY / ALPHA
         IMEPS = ( HALF-TWO ) / ALPHA
         DO 220 I = 1, M
            DO 210 J = 1, N
               R( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*ALPHA / TWENTY
               L( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*ALPHA / TWENTY
  210       CONTINUE
  220    CONTINUE
*
         DO 230 I = 1, M
            D( I, I ) = ONE
  230    CONTINUE
*
         DO 240 I = 1, M
            IF( I.LE.4 ) THEN
               A( I, I ) = ONE
               IF( I.GT.2 )
     $            A( I, I ) = ONE + REEPS
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
                  A( I, I+1 ) = IMEPS
               ELSE IF( I.GT.1 ) THEN
                  A( I, I-1 ) = -IMEPS
               END IF
            ELSE IF( I.LE.8 ) THEN
               IF( I.LE.6 ) THEN
                  A( I, I ) = REEPS
               ELSE
                  A( I, I ) = -REEPS
               END IF
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
                  A( I, I+1 ) = ONE
               ELSE IF( I.GT.1 ) THEN
                  A( I, I-1 ) = -ONE
               END IF
            ELSE
               A( I, I ) = ONE
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
                  A( I, I+1 ) = IMEPS*2
               ELSE IF( I.GT.1 ) THEN
                  A( I, I-1 ) = -IMEPS*2
               END IF
            END IF
  240    CONTINUE
*
         DO 250 I = 1, N
            E( I, I ) = ONE
            IF( I.LE.4 ) THEN
               B( I, I ) = -ONE
               IF( I.GT.2 )
     $            B( I, I ) = ONE - REEPS
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
                  B( I, I+1 ) = IMEPS
               ELSE IF( I.GT.1 ) THEN
                  B( I, I-1 ) = -IMEPS
               END IF
            ELSE IF( I.LE.8 ) THEN
               IF( I.LE.6 ) THEN
                  B( I, I ) = REEPS
               ELSE
                  B( I, I ) = -REEPS
               END IF
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
                  B( I, I+1 ) = ONE + IMEPS
               ELSE IF( I.GT.1 ) THEN
                  B( I, I-1 ) = -ONE - IMEPS
               END IF
            ELSE
               B( I, I ) = ONE - REEPS
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
                  B( I, I+1 ) = IMEPS*2
               ELSE IF( I.GT.1 ) THEN
                  B( I, I-1 ) = -IMEPS*2
               END IF
            END IF
  250    CONTINUE
      END IF
*
*     Compute rhs (C, F)
*
      CALL SGEMM( 'N', 'N', M, N, M, ONE, A, LDA, R, LDR, ZERO, C, LDC )
      CALL SGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, B, LDB, ONE, C, LDC )
      CALL SGEMM( 'N', 'N', M, N, M, ONE, D, LDD, R, LDR, ZERO, F, LDF )
      CALL SGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, E, LDE, ONE, F, LDF )
*
*     End of SLATM5
*
      END
 
     |