1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
.TH DOPGTR l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DOPGTR - generate a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors H(i) of order n, as returned by DSPTRD using packed storage
.SH SYNOPSIS
.TP 19
SUBROUTINE DOPGTR(
UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, LDQ, N
.TP 19
.ti +4
DOUBLE
PRECISION AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
.SH PURPOSE
DOPGTR generates a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors H(i) of order n, as returned by DSPTRD using packed storage:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
.br
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
.br
.SH ARGUMENTS
.TP 8
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to DSPTRD;
= 'L': Lower triangular packed storage used in previous
call to DSPTRD.
.TP 8
N (input) INTEGER
The order of the matrix Q. N >= 0.
.TP 8
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The vectors which define the elementary reflectors, as
returned by DSPTRD.
.TP 8
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSPTRD.
.TP 8
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
The N-by-N orthogonal matrix Q.
.TP 8
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
.TP 8
WORK (workspace) DOUBLE PRECISION array, dimension (N-1)
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
|