File: clansp.f

package info (click to toggle)
lapack 3.0.20000531a-18
  • links: PTS
  • area: main
  • in suites: woody
  • size: 59,896 kB
  • ctags: 45,291
  • sloc: fortran: 571,183; perl: 8,226; makefile: 2,328; awk: 71; sh: 45
file content (207 lines) | stat: -rw-r--r-- 6,351 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
      REAL             FUNCTION CLANSP( NORM, UPLO, N, AP, WORK )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            N
*     ..
*     .. Array Arguments ..
      REAL               WORK( * )
      COMPLEX            AP( * )
*     ..
*
*  Purpose
*  =======
*
*  CLANSP  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  complex symmetric matrix A,  supplied in packed form.
*
*  Description
*  ===========
*
*  CLANSP returns the value
*
*     CLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in CLANSP as described
*          above.
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is supplied.
*          = 'U':  Upper triangular part of A is supplied
*          = 'L':  Lower triangular part of A is supplied
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, CLANSP is
*          set to zero.
*
*  AP      (input) COMPLEX array, dimension (N*(N+1)/2)
*          The upper or lower triangle of the symmetric matrix A, packed
*          columnwise in a linear array.  The j-th column of A is stored
*          in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*  WORK    (workspace) REAL array, dimension (LWORK),
*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*          WORK is not referenced.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      REAL               ABSA, SCALE, SUM, VALUE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            K = 1
            DO 20 J = 1, N
               DO 10 I = K, K + J - 1
                  VALUE = MAX( VALUE, ABS( AP( I ) ) )
   10          CONTINUE
               K = K + J
   20       CONTINUE
         ELSE
            K = 1
            DO 40 J = 1, N
               DO 30 I = K, K + N - J
                  VALUE = MAX( VALUE, ABS( AP( I ) ) )
   30          CONTINUE
               K = K + N - J + 1
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is symmetric).
*
         VALUE = ZERO
         K = 1
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( AP( K ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
                  K = K + 1
   50          CONTINUE
               WORK( J ) = SUM + ABS( AP( K ) )
               K = K + 1
   60       CONTINUE
            DO 70 I = 1, N
               VALUE = MAX( VALUE, WORK( I ) )
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( AP( K ) )
               K = K + 1
               DO 90 I = J + 1, N
                  ABSA = ABS( AP( K ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
                  K = K + 1
   90          CONTINUE
               VALUE = MAX( VALUE, SUM )
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         K = 2
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM )
               K = K + J
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM )
               K = K + N - J + 1
  120       CONTINUE
         END IF
         SUM = 2*SUM
         K = 1
         DO 130 I = 1, N
            IF( REAL( AP( K ) ).NE.ZERO ) THEN
               ABSA = ABS( REAL( AP( K ) ) )
               IF( SCALE.LT.ABSA ) THEN
                  SUM = ONE + SUM*( SCALE / ABSA )**2
                  SCALE = ABSA
               ELSE
                  SUM = SUM + ( ABSA / SCALE )**2
               END IF
            END IF
            IF( AIMAG( AP( K ) ).NE.ZERO ) THEN
               ABSA = ABS( AIMAG( AP( K ) ) )
               IF( SCALE.LT.ABSA ) THEN
                  SUM = ONE + SUM*( SCALE / ABSA )**2
                  SCALE = ABSA
               ELSE
                  SUM = SUM + ( ABSA / SCALE )**2
               END IF
            END IF
            IF( LSAME( UPLO, 'U' ) ) THEN
               K = K + I + 1
            ELSE
               K = K + N - I + 1
            END IF
  130    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      CLANSP = VALUE
      RETURN
*
*     End of CLANSP
*
      END