File: cspcon.f

package info (click to toggle)
lapack 3.0.20000531a-18
  • links: PTS
  • area: main
  • in suites: woody
  • size: 59,896 kB
  • ctags: 45,291
  • sloc: fortran: 571,183; perl: 8,226; makefile: 2,328; awk: 71; sh: 45
file content (155 lines) | stat: -rw-r--r-- 4,340 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
      SUBROUTINE CSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993 
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, N
      REAL               ANORM, RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AP( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CSPCON estimates the reciprocal of the condition number (in the
*  1-norm) of a complex symmetric packed matrix A using the
*  factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF.
*
*  An estimate is obtained for norm(inv(A)), and the reciprocal of the
*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the details of the factorization are stored
*          as an upper or lower triangular matrix.
*          = 'U':  Upper triangular, form is A = U*D*U**T;
*          = 'L':  Lower triangular, form is A = L*D*L**T.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input) COMPLEX array, dimension (N*(N+1)/2)
*          The block diagonal matrix D and the multipliers used to
*          obtain the factor U or L as computed by CSPTRF, stored as a
*          packed triangular matrix.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D
*          as determined by CSPTRF.
*
*  ANORM   (input) REAL
*          The 1-norm of the original matrix A.
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
*          estimate of the 1-norm of inv(A) computed in this routine.
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IP, KASE
      REAL               AINVNM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACON, CSPTRS, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSPCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.LE.ZERO ) THEN
         RETURN
      END IF
*
*     Check that the diagonal matrix D is nonsingular.
*
      IF( UPPER ) THEN
*
*        Upper triangular storage: examine D from bottom to top
*
         IP = N*( N+1 ) / 2
         DO 10 I = N, 1, -1
            IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
     $         RETURN
            IP = IP - I
   10    CONTINUE
      ELSE
*
*        Lower triangular storage: examine D from top to bottom.
*
         IP = 1
         DO 20 I = 1, N
            IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
     $         RETURN
            IP = IP + N - I + 1
   20    CONTINUE
      END IF
*
*     Estimate the 1-norm of the inverse.
*
      KASE = 0
   30 CONTINUE
      CALL CLACON( N, WORK( N+1 ), WORK, AINVNM, KASE )
      IF( KASE.NE.0 ) THEN
*
*        Multiply by inv(L*D*L') or inv(U*D*U').
*
         CALL CSPTRS( UPLO, N, 1, AP, IPIV, WORK, N, INFO )
         GO TO 30
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
      RETURN
*
*     End of CSPCON
*
      END