1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
SUBROUTINE CSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX AP( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CSPCON estimates the reciprocal of the condition number (in the
* 1-norm) of a complex symmetric packed matrix A using the
* factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the details of the factorization are stored
* as an upper or lower triangular matrix.
* = 'U': Upper triangular, form is A = U*D*U**T;
* = 'L': Lower triangular, form is A = L*D*L**T.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input) COMPLEX array, dimension (N*(N+1)/2)
* The block diagonal matrix D and the multipliers used to
* obtain the factor U or L as computed by CSPTRF, stored as a
* packed triangular matrix.
*
* IPIV (input) INTEGER array, dimension (N)
* Details of the interchanges and the block structure of D
* as determined by CSPTRF.
*
* ANORM (input) REAL
* The 1-norm of the original matrix A.
*
* RCOND (output) REAL
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
* estimate of the 1-norm of inv(A) computed in this routine.
*
* WORK (workspace) COMPLEX array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IP, KASE
REAL AINVNM
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLACON, CSPTRS, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CSPCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.LE.ZERO ) THEN
RETURN
END IF
*
* Check that the diagonal matrix D is nonsingular.
*
IF( UPPER ) THEN
*
* Upper triangular storage: examine D from bottom to top
*
IP = N*( N+1 ) / 2
DO 10 I = N, 1, -1
IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
$ RETURN
IP = IP - I
10 CONTINUE
ELSE
*
* Lower triangular storage: examine D from top to bottom.
*
IP = 1
DO 20 I = 1, N
IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
$ RETURN
IP = IP + N - I + 1
20 CONTINUE
END IF
*
* Estimate the 1-norm of the inverse.
*
KASE = 0
30 CONTINUE
CALL CLACON( N, WORK( N+1 ), WORK, AINVNM, KASE )
IF( KASE.NE.0 ) THEN
*
* Multiply by inv(L*D*L') or inv(U*D*U').
*
CALL CSPTRS( UPLO, N, 1, AP, IPIV, WORK, N, INFO )
GO TO 30
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
RETURN
*
* End of CSPCON
*
END
|