File: cpbt01.f

package info (click to toggle)
lapack 3.0.20000531a-18
  • links: PTS
  • area: main
  • in suites: woody
  • size: 59,896 kB
  • ctags: 45,291
  • sloc: fortran: 571,183; perl: 8,226; makefile: 2,328; awk: 71; sh: 45
file content (201 lines) | stat: -rw-r--r-- 6,043 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
      SUBROUTINE CPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KD, LDA, LDAFAC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
*     ..
*
*  Purpose
*  =======
*
*  CPBT01 reconstructs a Hermitian positive definite band matrix A from
*  its L*L' or U'*U factorization and computes the residual
*     norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*     norm( U'*U - A ) / ( N * norm(A) * EPS ),
*  where EPS is the machine epsilon, L' is the conjugate transpose of
*  L, and U' is the conjugate transpose of U.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of super-diagonals of the matrix A if UPLO = 'U',
*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original Hermitian band matrix A.  If UPLO = 'U', the
*          upper triangular part of A is stored as a band matrix; if
*          UPLO = 'L', the lower triangular part of A is stored.  The
*          columns of the appropriate triangle are stored in the columns
*          of A and the diagonals of the triangle are stored in the rows
*          of A.  See CPBTRF for further details.
*
*  LDA     (input) INTEGER.
*          The leading dimension of the array A.  LDA >= max(1,KD+1).
*
*  AFAC    (input) COMPLEX array, dimension (LDAFAC,N)
*          The factored form of the matrix A.  AFAC contains the factor
*          L or U from the L*L' or U'*U factorization in band storage
*          format, as computed by CPBTRF.
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.
*          LDAFAC >= max(1,KD+1).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K, KC, KLEN, ML, MU
      REAL               AKK, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANHB, SLAMCH
      COMPLEX            CDOTC
      EXTERNAL           LSAME, CLANHB, SLAMCH, CDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHER, CSSCAL, CTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAG, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 10 J = 1, N
            IF( AIMAG( AFAC( KD+1, J ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
   10    CONTINUE
      ELSE
         DO 20 J = 1, N
            IF( AIMAG( AFAC( 1, J ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
   20    CONTINUE
      END IF
*
*     Compute the product U'*U, overwriting U.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 30 K = N, 1, -1
            KC = MAX( 1, KD+2-K )
            KLEN = KD + 1 - KC
*
*           Compute the (K,K) element of the result.
*
            AKK = CDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
            AFAC( KD+1, K ) = AKK
*
*           Compute the rest of column K.
*
            IF( KLEN.GT.0 )
     $         CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', KLEN,
     $                     AFAC( KD+1, K-KLEN ), LDAFAC-1,
     $                     AFAC( KC, K ), 1 )
*
   30    CONTINUE
*
*     UPLO = 'L':  Compute the product L*L', overwriting L.
*
      ELSE
         DO 40 K = N, 1, -1
            KLEN = MIN( KD, N-K )
*
*           Add a multiple of column K of the factor L to each of
*           columns K+1 through N.
*
            IF( KLEN.GT.0 )
     $         CALL CHER( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
     $                    AFAC( 1, K+1 ), LDAFAC-1 )
*
*           Scale column K by the diagonal element.
*
            AKK = AFAC( 1, K )
            CALL CSSCAL( KLEN+1, AKK, AFAC( 1, K ), 1 )
*
   40    CONTINUE
      END IF
*
*     Compute the difference  L*L' - A  or  U'*U - A.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 60 J = 1, N
            MU = MAX( 1, KD+2-J )
            DO 50 I = MU, KD + 1
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   50       CONTINUE
   60    CONTINUE
      ELSE
         DO 80 J = 1, N
            ML = MIN( KD+1, N-J+1 )
            DO 70 I = 1, ML
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   70       CONTINUE
   80    CONTINUE
      END IF
*
*     Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
*
      RESID = CLANHB( '1', UPLO, N, KD, AFAC, LDAFAC, RWORK )
*
      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
      RETURN
*
*     End of CPBT01
*
      END