1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
SUBROUTINE DQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DQRT01 tests DGEQRF, which computes the QR factorization of an m-by-n
* matrix A, and partially tests DORGQR which forms the m-by-m
* orthogonal matrix Q.
*
* DQRT01 compares R with Q'*A, and checks that Q is orthogonal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The m-by-n matrix A.
*
* AF (output) DOUBLE PRECISION array, dimension (LDA,N)
* Details of the QR factorization of A, as returned by DGEQRF.
* See DGEQRF for further details.
*
* Q (output) DOUBLE PRECISION array, dimension (LDA,M)
* The m-by-m orthogonal matrix Q.
*
* R (workspace) DOUBLE PRECISION array, dimension (LDA,max(M,N))
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and R.
* LDA >= max(M,N).
*
* TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
* The scalar factors of the elementary reflectors, as returned
* by DGEQRF.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* The test ratios:
* RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
* RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION ROGUE
PARAMETER ( ROGUE = -1.0D+10 )
* ..
* .. Local Scalars ..
INTEGER INFO, MINMN
DOUBLE PRECISION ANORM, EPS, RESID
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DGEQRF, DLACPY, DLASET, DORGQR, DSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Scalars in Common ..
CHARACTER*6 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
MINMN = MIN( M, N )
EPS = DLAMCH( 'Epsilon' )
*
* Copy the matrix A to the array AF.
*
CALL DLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
* Factorize the matrix A in the array AF.
*
SRNAMT = 'DGEQRF'
CALL DGEQRF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
* Copy details of Q
*
CALL DLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
CALL DLACPY( 'Lower', M-1, N, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
* Generate the m-by-m matrix Q
*
SRNAMT = 'DORGQR'
CALL DORGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
* Copy R
*
CALL DLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
CALL DLACPY( 'Upper', M, N, AF, LDA, R, LDA )
*
* Compute R - Q'*A
*
CALL DGEMM( 'Transpose', 'No transpose', M, N, M, -ONE, Q, LDA, A,
$ LDA, ONE, R, LDA )
*
* Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
*
ANORM = DLANGE( '1', M, N, A, LDA, RWORK )
RESID = DLANGE( '1', M, N, R, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q'*Q
*
CALL DLASET( 'Full', M, M, ZERO, ONE, R, LDA )
CALL DSYRK( 'Upper', 'Transpose', M, M, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
RESID = DLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
*
RETURN
*
* End of DQRT01
*
END
|