1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
SUBROUTINE SERRGT( PATH, NUNIT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* Purpose
* =======
*
* SERRGT tests the error exits for the REAL tridiagonal
* routines.
*
* Arguments
* =========
*
* PATH (input) CHARACTER*3
* The LAPACK path name for the routines to be tested.
*
* NUNIT (input) INTEGER
* The unit number for output.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 2 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER INFO
REAL ANORM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX ), IW( NMAX )
REAL B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ),
$ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ),
$ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, SGTCON, SGTRFS, SGTTRF, SGTTRS,
$ SPTCON, SPTRFS, SPTTRF, SPTTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
D( 1 ) = 1.
D( 2 ) = 2.
DF( 1 ) = 1.
DF( 2 ) = 2.
E( 1 ) = 3.
E( 2 ) = 4.
EF( 1 ) = 3.
EF( 2 ) = 4.
ANORM = 1.0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* Test error exits for the general tridiagonal routines.
*
* SGTTRF
*
SRNAMT = 'SGTTRF'
INFOT = 1
CALL SGTTRF( -1, C, D, E, F, IP, INFO )
CALL CHKXER( 'SGTTRF', INFOT, NOUT, LERR, OK )
*
* SGTTRS
*
SRNAMT = 'SGTTRS'
INFOT = 1
CALL SGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'SGTTRS', INFOT, NOUT, LERR, OK )
*
* SGTRFS
*
SRNAMT = 'SGTRFS'
INFOT = 1
CALL SGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X,
$ 1, R1, R2, W, IW, INFO )
CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X,
$ 1, R1, R2, W, IW, INFO )
CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL SGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 15
CALL SGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'SGTRFS', INFOT, NOUT, LERR, OK )
*
* SGTCON
*
SRNAMT = 'SGTCON'
INFOT = 1
CALL SGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'SGTCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'SGTCON', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'SGTCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* Test error exits for the positive definite tridiagonal
* routines.
*
* SPTTRF
*
SRNAMT = 'SPTTRF'
INFOT = 1
CALL SPTTRF( -1, D, E, INFO )
CALL CHKXER( 'SPTTRF', INFOT, NOUT, LERR, OK )
*
* SPTTRS
*
SRNAMT = 'SPTTRS'
INFOT = 1
CALL SPTTRS( -1, 0, D, E, X, 1, INFO )
CALL CHKXER( 'SPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPTTRS( 0, -1, D, E, X, 1, INFO )
CALL CHKXER( 'SPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SPTTRS( 2, 1, D, E, X, 1, INFO )
CALL CHKXER( 'SPTTRS', INFOT, NOUT, LERR, OK )
*
* SPTRFS
*
SRNAMT = 'SPTRFS'
INFOT = 1
CALL SPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO )
CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'SPTRFS', INFOT, NOUT, LERR, OK )
*
* SPTCON
*
SRNAMT = 'SPTCON'
INFOT = 1
CALL SPTCON( -1, D, E, ANORM, RCOND, W, INFO )
CALL CHKXER( 'SPTCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPTCON( 0, D, E, -ANORM, RCOND, W, INFO )
CALL CHKXER( 'SPTCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of SERRGT
*
END
|