File: zqrt01.f

package info (click to toggle)
lapack 3.0.20000531a-18
  • links: PTS
  • area: main
  • in suites: woody
  • size: 59,896 kB
  • ctags: 45,291
  • sloc: fortran: 571,183; perl: 8,226; makefile: 2,328; awk: 71; sh: 45
file content (158 lines) | stat: -rw-r--r-- 4,746 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
      SUBROUTINE ZQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( * ), RWORK( * )
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZQRT01 tests ZGEQRF, which computes the QR factorization of an m-by-n
*  matrix A, and partially tests ZUNGQR which forms the m-by-m
*  orthogonal matrix Q.
*
*  ZQRT01 compares R with Q'*A, and checks that Q is orthogonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The m-by-n matrix A.
*
*  AF      (output) COMPLEX*16 array, dimension (LDA,N)
*          Details of the QR factorization of A, as returned by ZGEQRF.
*          See ZGEQRF for further details.
*
*  Q       (output) COMPLEX*16 array, dimension (LDA,M)
*          The m-by-m orthogonal matrix Q.
*
*  R       (workspace) COMPLEX*16 array, dimension (LDA,max(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and R.
*          LDA >= max(M,N).
*
*  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by ZGEQRF.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         ROGUE
      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZGEQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'ZGEQRF'
      CALL ZGEQRF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
      CALL ZLACPY( 'Lower', M-1, N, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
*     Generate the m-by-m matrix Q
*
      SRNAMT = 'ZUNGQR'
      CALL ZUNGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy R
*
      CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), R,
     $             LDA )
      CALL ZLACPY( 'Upper', M, N, AF, LDA, R, LDA )
*
*     Compute R - Q'*A
*
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M,
     $            DCMPLX( -ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), R,
     $            LDA )
*
*     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
*
      ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
      RESID = ZLANGE( '1', M, N, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q'*Q
*
      CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
      CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA,
     $            ONE, R, LDA )
*
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
      RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
*
      RETURN
*
*     End of ZQRT01
*
      END