File: zqrt12.f

package info (click to toggle)
lapack 3.0.20000531a-18
  • links: PTS
  • area: main
  • in suites: woody
  • size: 59,896 kB
  • ctags: 45,291
  • sloc: fortran: 571,183; perl: 8,226; makefile: 2,328; awk: 71; sh: 45
file content (169 lines) | stat: -rw-r--r-- 4,723 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      DOUBLE PRECISION FUNCTION ZQRT12( M, N, A, LDA, S, WORK, LWORK,
     $                 RWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * ), S( * )
      COMPLEX*16         A( LDA, * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZQRT12 computes the singular values `svlues' of the upper trapezoid
*  of A(1:M,1:N) and returns the ratio
*
*       || s - svlues||/(||svlues||*eps*max(M,N))
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The M-by-N matrix A. Only the upper trapezoid is referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*
*  S       (input) DOUBLE PRECISION array, dimension (min(M,N))
*          The singular values of the matrix A.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
*          max(M,N).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*min(M,N))
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, ISCL, J, MN
      DOUBLE PRECISION   ANRM, BIGNUM, NRMSVL, SMLNUM
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   DUMMY( 1 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DASUM, DLAMCH, DNRM2, ZLANGE
      EXTERNAL           DASUM, DLAMCH, DNRM2, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DBDSQR, DLABAD, DLASCL, XERBLA, ZGEBD2,
     $                   ZLASCL, ZLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      ZQRT12 = ZERO
*
*     Test that enough workspace is supplied
*
      IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN
         CALL XERBLA( 'ZQRT12', 7 )
         RETURN
      END IF
*
*     Quick return if possible
*
      MN = MIN( M, N )
      IF( MN.LE.ZERO )
     $   RETURN
*
      NRMSVL = DNRM2( MN, S, 1 )
*
*     Copy upper triangle of A into work
*
      CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), WORK,
     $             M )
      DO 20 J = 1, N
         DO 10 I = 1, MIN( J, M )
            WORK( ( J-1 )*M+I ) = A( I, J )
   10    CONTINUE
   20 CONTINUE
*
*     Get machine parameters
*
      SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
*
*     Scale work if max entry outside range [SMLNUM,BIGNUM]
*
      ANRM = ZLANGE( 'M', M, N, WORK, M, DUMMY )
      ISCL = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
*        Scale matrix norm up to SMLNUM
*
         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
         ISCL = 1
      ELSE IF( ANRM.GT.BIGNUM ) THEN
*
*        Scale matrix norm down to BIGNUM
*
         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
         ISCL = 1
      END IF
*
      IF( ANRM.NE.ZERO ) THEN
*
*        Compute SVD of work
*
         CALL ZGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ),
     $                WORK( M*N+1 ), WORK( M*N+MN+1 ),
     $                WORK( M*N+2*MN+1 ), INFO )
         CALL DBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ),
     $                DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ), 
     $                INFO )
*
         IF( ISCL.EQ.1 ) THEN
            IF( ANRM.GT.BIGNUM ) THEN
               CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ),
     $                      MN, INFO )
            END IF
            IF( ANRM.LT.SMLNUM ) THEN
               CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ),
     $                      MN, INFO )
            END IF
         END IF
*
      ELSE
*
         DO 30 I = 1, MN
            RWORK( I ) = ZERO
   30    CONTINUE
      END IF
*
*     Compare s and singular values of work
*
      CALL DAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 )
      ZQRT12 = DASUM( MN, RWORK( 1 ), 1 ) /
     $         ( DLAMCH( 'Epsilon' )*DBLE( MAX( M, N ) ) )
      IF( NRMSVL.NE.ZERO )
     $   ZQRT12 = ZQRT12 / NRMSVL
*
      RETURN
*
*     End of ZQRT12
*
      END