File: zqrt15.f

package info (click to toggle)
lapack 3.0.20000531a-18
  • links: PTS
  • area: main
  • in suites: woody
  • size: 59,896 kB
  • ctags: 45,291
  • sloc: fortran: 571,183; perl: 8,226; makefile: 2,328; awk: 71; sh: 45
file content (233 lines) | stat: -rw-r--r-- 6,885 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
      SUBROUTINE ZQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
     $                   RANK, NORMA, NORMB, ISEED, WORK, LWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
      DOUBLE PRECISION   NORMA, NORMB
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   S( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZQRT15 generates a matrix with full or deficient rank and of various
*  norms.
*
*  Arguments
*  =========
*
*  SCALE   (input) INTEGER
*          SCALE = 1: normally scaled matrix
*          SCALE = 2: matrix scaled up
*          SCALE = 3: matrix scaled down
*
*  RKSEL   (input) INTEGER
*          RKSEL = 1: full rank matrix
*          RKSEL = 2: rank-deficient matrix
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.
*
*  N       (input) INTEGER
*          The number of columns of A.
*
*  NRHS    (input) INTEGER
*          The number of columns of B.
*
*  A       (output) COMPLEX*16 array, dimension (LDA,N)
*          The M-by-N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*
*  B       (output) COMPLEX*16 array, dimension (LDB, NRHS)
*          A matrix that is in the range space of matrix A.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.
*
*  S       (output) DOUBLE PRECISION array, dimension MIN(M,N)
*          Singular values of A.
*
*  RANK    (output) INTEGER
*          number of nonzero singular values of A.
*
*  NORMA   (output) DOUBLE PRECISION
*          one-norm norm of A.
*
*  NORMB   (output) DOUBLE PRECISION
*          one-norm norm of B.
*
*  ISEED   (input/output) integer array, dimension (4)
*          seed for random number generator.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          length of work space required.
*          LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, SVMIN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                   SVMIN = 0.1D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, J, MN
      DOUBLE PRECISION   BIGNUM, EPS, SMLNUM, TEMP
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   DUMMY( 1 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DASUM, DLAMCH, DLARND, DZNRM2, ZLANGE
      EXTERNAL           DASUM, DLAMCH, DLARND, DZNRM2, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, DLAORD, DLASCL, XERBLA, ZDSCAL, ZGEMM,
     $                   ZLARF, ZLARNV, ZLAROR, ZLASCL, ZLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      MN = MIN( M, N )
      IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
         CALL XERBLA( 'ZQRT15', 16 )
         RETURN
      END IF
*
      SMLNUM = DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      EPS = DLAMCH( 'Epsilon' )
      SMLNUM = ( SMLNUM / EPS ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Determine rank and (unscaled) singular values
*
      IF( RKSEL.EQ.1 ) THEN
         RANK = MN
      ELSE IF( RKSEL.EQ.2 ) THEN
         RANK = ( 3*MN ) / 4
         DO 10 J = RANK + 1, MN
            S( J ) = ZERO
   10    CONTINUE
      ELSE
         CALL XERBLA( 'ZQRT15', 2 )
      END IF
*
      IF( RANK.GT.0 ) THEN
*
*        Nontrivial case
*
         S( 1 ) = ONE
         DO 30 J = 2, RANK
   20       CONTINUE
            TEMP = DLARND( 1, ISEED )
            IF( TEMP.GT.SVMIN ) THEN
               S( J ) = ABS( TEMP )
            ELSE
               GO TO 20
            END IF
   30    CONTINUE
         CALL DLAORD( 'Decreasing', RANK, S, 1 )
*
*        Generate 'rank' columns of a random orthogonal matrix in A
*
         CALL ZLARNV( 2, ISEED, M, WORK )
         CALL ZDSCAL( M, ONE / DZNRM2( M, WORK, 1 ), WORK, 1 )
         CALL ZLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
         CALL ZLARF( 'Left', M, RANK, WORK, 1, DCMPLX( TWO ), A, LDA,
     $               WORK( M+1 ) )
*
*        workspace used: m+mn
*
*        Generate consistent rhs in the range space of A
*
         CALL ZLARNV( 2, ISEED, RANK*NRHS, WORK )
         CALL ZGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
     $               CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
*
*        work space used: <= mn *nrhs
*
*        generate (unscaled) matrix A
*
         DO 40 J = 1, RANK
            CALL ZDSCAL( M, S( J ), A( 1, J ), 1 )
   40    CONTINUE
         IF( RANK.LT.N )
     $      CALL ZLASET( 'Full', M, N-RANK, CZERO, CZERO,
     $                   A( 1, RANK+1 ), LDA )
         CALL ZLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
     $                WORK, INFO )
*
      ELSE
*
*        work space used 2*n+m
*
*        Generate null matrix and rhs
*
         DO 50 J = 1, MN
            S( J ) = ZERO
   50    CONTINUE
         CALL ZLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
         CALL ZLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
*
      END IF
*
*     Scale the matrix
*
      IF( SCALE.NE.1 ) THEN
         NORMA = ZLANGE( 'Max', M, N, A, LDA, DUMMY )
         IF( NORMA.NE.ZERO ) THEN
            IF( SCALE.EQ.2 ) THEN
*
*              matrix scaled up
*
               CALL ZLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
     $                      LDA, INFO )
               CALL DLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
     $                      MN, INFO )
               CALL ZLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
     $                      LDB, INFO )
            ELSE IF( SCALE.EQ.3 ) THEN
*
*              matrix scaled down
*
               CALL ZLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
     $                      LDA, INFO )
               CALL DLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
     $                      MN, INFO )
               CALL ZLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
     $                      LDB, INFO )
            ELSE
               CALL XERBLA( 'ZQRT15', 1 )
               RETURN
            END IF
         END IF
      END IF
*
      NORMA = DASUM( MN, S, 1 )
      NORMB = ZLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
*
      RETURN
*
*     End of ZQRT15
*
      END