1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
|
***********************************************************************
-----------------------------------
MACHINE-SPECIFIC INSTALLATION HINTS:
-----------------------------------
Entries are listed in ALPHABETICAL ORDER by the computer name.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
TEMPLATE FOR THE ENTRIES: +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
================================================================== +
Computer name, version of OS, and version of fortran compiler used +
================================================================== +
+
Compiler/options: +
+
BLAS: +
+
Test status: +
+
Notes: +
+
----- Date reported: +
+
================================================================== +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
----------------------
KNOWN TESTING FAILURES:
----------------------
The only known testing failures are in condition number estimation
routines in the generalized nonsymmetric eigenproblem testing.
Specifically in sgd.out, dgd.out, cgd.out and zgd.out. The cause for
the failures of some test cases is that the mathematical algorithm
used for estimating the condition numbers could over- or under-estimate
the true values in a certain factor in some rare cases. Further
details can be found in LAPACK Working Note 87.
The failures noted below were reported to us and are still under
investigation. Please contact us (lapack@cs.utk.edu) if you feel that
an entry is out-of-date or incorrect.
Please NOTE that no claim is made as to the accuracy of the installation
information for specific computers; in some cases, no attempts were made
at verification.
======================================================================
Apple Mac G4
OS: PPC RedHat Linux 6.0 (kernel 2.2.15)
g77 (version egcs-2.91.66)
LAPACK, version 3.0 + update
FORTRAN = g77
OPTS = -fno-f2c -O3
DRVOPTS = $(OPTS)
NOOPT =
LOADER = g77
LOADOPTS =
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
Notes:
(1)Do not use -funroll-all-loops option!
Test status: Expected failures in sgd.out and cgd.out;
Minor failures of SPB and SLS in stest.out and ctest.out;
----- Date reported: March, 2000
=======================================================================
CRAY C90, Unicos 9.0 with Programming Environment 3.0
LAPACK: VERSION 3.0
FORTRAN = f90
OPTS = -O3
DRVOPTS = $(OPTS)
NOOPT = -g
LOADER = f90
LOADOPTS =
BLAS: /lib/libsci.a
except for SNRM2 and SCNRM2 (use Fortran versions)
Notes:
1. The Cray compilers implement a complex divide without scaling. To run
the complex linear equation tests on the T3D, I had to modify SLABAD to
take the square root of overflow and underflow. I ran the eigenvalue
tests with the default version of SLABAD.
2. I also needed the Fortran SNRM2 when running the real linear equation
tests on a CRAY C90.
3. Set ILAENV=0 for ISPEC=10 and ISPEC=11 in LAPACK/SRC/ilaenv.f, as
well as the specialized versions of ILAENV in TESTING/LIN/, TESTING/EIG/,
TIMING/LIN/, and TIMING/EIG/.
Test status: Expected failures in sgd.out and cgd.out;
Failure in ssg.in (under investigation);
-------
ssg.out
-------
SSG: NB = 3, NBMIN = 2, NX = 1
SDRVSG: SSYGVX(V,AU) returned INFO= 1.
N= 3, JTYPE= 10, ISEED=( 458, 2510, 3431, 397)
SSG -- Real Symmetric Generalized eigenvalue problem
Matrix types (see xDRVSG for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense or Banded Symmetric Matrices:
8=Evenly spaced eigenvals. 15=Matrix with small random entries.
9=Geometrically spaced eigenvals. 16=Evenly spaced eigenvals, KA=1, KB=1.
10=Clustered eigenvalues. 17=Evenly spaced eigenvals, KA=2, KB=1.
11=Large, evenly spaced eigenvals. 18=Evenly spaced eigenvals, KA=2, KB=2.
12=Small, evenly spaced eigenvals. 19=Evenly spaced eigenvals, KA=3, KB=1.
13=Matrix with random O(1) entries. 20=Evenly spaced eigenvals, KA=3, KB=2.
14=Matrix with large random entries. 21=Evenly spaced eigenvals, KA=3, KB=3.
Tests performed:
( For each pair (A,B), where A is of the given type
and B is a random well-conditioned matrix. D is
diagonal, and Z is orthogonal. )
1 = SSYGV, with ITYPE=1 and UPLO='U': | A Z - B Z D | / ( |A| |Z| n ulp )
2 = SSPGV, with ITYPE=1 and UPLO='U': | A Z - B Z D | / ( |A| |Z| n ulp )
3 = SSBGV, with ITYPE=1 and UPLO='U': | A Z - B Z D | / ( |A| |Z| n ulp )
4 = SSYGV, with ITYPE=1 and UPLO='L': | A Z - B Z D | / ( |A| |Z| n ulp )
5 = SSPGV, with ITYPE=1 and UPLO='L': | A Z - B Z D | / ( |A| |Z| n ulp )
6 = SSBGV, with ITYPE=1 and UPLO='L': | A Z - B Z D | / ( |A| |Z| n ulp )
7 = SSYGV, with ITYPE=2 and UPLO='U': | A B Z - Z D | / ( |A| |Z| n ulp )
8 = SSPGV, with ITYPE=2 and UPLO='U': | A B Z - Z D | / ( |A| |Z| n ulp )
9 = SSPGV, with ITYPE=2 and UPLO='L': | A B Z - Z D | / ( |A| |Z| n ulp )
10 = SSPGV, with ITYPE=2 and UPLO='L': | A B Z - Z D | / ( |A| |Z| n ulp )
11 = SSYGV, with ITYPE=3 and UPLO='U': | B A Z - Z D | / ( |A| |Z| n ulp )
12 = SSPGV, with ITYPE=3 and UPLO='U': | B A Z - Z D | / ( |A| |Z| n ulp )
13 = SSYGV, with ITYPE=3 and UPLO='L': | B A Z - Z D | / ( |A| |Z| n ulp )
14 = SSPGV, with ITYPE=3 and UPLO='L': | B A Z - Z D | / ( |A| |Z| n ulp )
Matrix order= 3, type=10, seed= 458,2510,3431, 397, result 53 is 3.518E+13
SSG: 1 out of 10288 tests failed to pass the threshold
----- Date reported: April, 1999
=======================================================================
=======================================================================
DCG ALPHA LX164
OS: Alpha RedHat Linux 6.0 (kernel 2.2.5-16)
g77 (version egcs-2.91.66)
LAPACK, version 3.0 + update
FORTRAN = g77
OPTS = -funroll-all-loops -fno-f2c -O3
DRVOPTS = $(OPTS)
NOOPT =
LOADER = g77
LOADOPTS =
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
Notes:
(1)Set ILAENV=0 for ISPEC=10 and ISPEC=11 in LAPACK/SRC/ilaenv.f, as
well as the specialized versions of ILAENV in TESTING/LIN/, TESTING/EIG/,
TIMING/LIN/, and TIMING/EIG/.
Test status: Expected failures in sgd.out and cgd.out;
Minor failures of SPB and SLS in stest.out and ctest.out;
Failure in csvd.out and minor failure in zsep.out;
Failure in cgbak.out (under investigation, optimization?);
---------
cgbak.out
---------
.. test output of CGGBAK ..
value of largest test error = 0.796E+04
example number where CGGBAL info is not 0 = 0
example number where CGGBAK(L) info is not 0 = 0
example number where CGGBAK(R) info is not 0 = 0
example number having largest error = 5
number of examples where info is not 0 = 0
total number of examples tested = 10
End of tests
Total time used = 0.01 seconds
----- Date reported: March, 2000
=======================================================================
=======================================================================
DEC 3000-500 ALPHA
OS: OSF1 V4.0 (Rev. 1091)
COMPILER: F90
LAPACK, version 3.0 + update
FORTRAN = f77
OPTS = -O4 -fpe1
DRVOPTS = $(OPTS)
NOOPT =
LOADER = f77
LOADOPTS =
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
BLASLIB = -ldxml
Test status: Expected failures in sgd.out and cgd.out;
Minor failures of SPB and SLS in stest.out and ctest.out;
Minor failures in ssep.out/csep.out and ssvd.out/csvd.out;
Failure in cgbak.out (under investigation, optimization?);
If (-O5 -fpe1 level of optimization) is used, failures in
STP,DTP,CTP, and ZTP tests in _test.out;
---------
cgbak.out
---------
.. test output of CGGBAK ..
value of largest test error = 0.796E+04
example number where CGGBAL info is not 0 = 0
example number where CGGBAK(L) info is not 0 = 0
example number where CGGBAK(R) info is not 0 = 0
example number having largest error = 5
number of examples where info is not 0 = 0
total number of examples tested = 10
End of tests
Total time used = 0.01 seconds
----- Date reported: November, 1999
=======================================================================
=======================================================================
Hewlett Packard HP 9000 Model 735
OS: HP-UX A.09.05
F77, HP-UX Release 10.0
LAPACK, version 3.0
FORTRAN = f77
OPTS = +O4 +U77
DRVOPTS = $(OPTS) -K
NOOPT = +U77
LOADER = f77
LOADOPTS = -Aa +U77
ARCH = ar
ARCHFLAGS= cr
RANLIB = echo
BLASLIB = -lblas (HP BLAS)
Test status: As yet, Unable to run xeigtst_ tests due to swap space
problem
Notes:
1. Due to unscaled complex divide, you must set LAPACK/SRC/slabad.f
and dlabad.f to take the square root of SMLNUM and BIGNUM as for
the Cray.
2. LAPACK/INSTALL/testieee test failed for NaN arithmetic. Set
ILAENV=0 for ISPEC=10 and ISPEC=11 in ilaenv.f.
----- Date reported: April, 1999
=======================================================================
=======================================================================
IBM RS/6000 Power3
OS: AIX VERSION 4.3.3
COMPILER: XL FORTRAN Compiler Version 6.1.0.0
LAPACK, version 3.0 + UPDATE
FORTRAN = xlf
OPTS = -O3 -qarch=pwr3 -qmaxmem=-1
DRVOPTS = $(OPTS)
NOOPT =
LOADER = xlf
LOADOPTS =
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
BLASLIB = -lessl
BLAS: (ESSL version 3.1.1.0)
Notes:
(1) use XLF-supplied routine ETIME_ for second.f and dsecnd.f
(2) Remove all optimization for SRC/cgtrfs.f (xlf -qarch=pwr3)
SRC/zgtrfs.f
TESTING/LIN/cgtt05.f
TESTING/LIN/zgtt05.f
Example error message:
"cgtrfs.f", 1500-008 (S) COMPILER LIMIT EXCEEDED in cgtrfs: Program too
complicated to be compiled. Compilation ended. Reduce the complexity of
the program and recompile, or lower the level of optimization and recompile.
Test status: Expected failures in _gd.out;
RMAX failures in sec.out/dec.out;
Failure in zgbak.out (under investigation, optimization?);
Failure in ssvd.out/dsvd.out/zsvd.out (under investigation);
Minors failure in ssep.out and snep.out;
Failures in csep.out/zsep.out (under investigation).
--------
dec.out
-------
Tests of the Nonsymmetric eigenproblem condition estimation routines
DLALN2, DLASY2, DLANV2, DLAEXC, DTRSYL, DTREXC, DTRSNA, DTRSEN, DLAQTR
Relative machine precision (EPS) = .222045D-15
Safe minimum (SFMIN) = .222507-307
Routines pass computational tests if test ratio is less than 20.00
DEC routines passed the tests of the error exits ( 35 tests done)
Error in DLANV2: RMAX = .117D+16
LMAX = 16067 NINFO= 0 KNT= 20736
Error in DLAEXC: RMAX = .808D+15
LMAX = 11125 NINFO= 148 0 KNT= 42258
Error in DTREXC: RMAX = .686D+15
LMAX = 14 NINFO= 0 0 0 KNT= 14
Error in DTRSEN: RMAX = .728D+05 .152D+01 .152D+01
LMAX = 76 68 68 NINFO= 0 0 0 KNT= 78
End of tests
Total time used = 6.65 seconds
--------
zgbak.out
---------
.. test output of ZGGBAK ..
value of largest test error = .796D+04
example number where ZGGBAL info is not 0 = 0
example number where ZGGBAK(L) info is not 0 = 0
example number where ZGGBAK(R) info is not 0 = 0
example number having largest error = 5
number of examples where info is not 0 = 0
total number of examples tested = 10
End of tests
Total time used = .02 seconds
--------
ssvd.out
--------
SVD: NB = 1, NBMIN = 2, NX = 1, NRHS = 2
SCHKBD: SBDSDC(vects) returned INFO= 1.
M= 30, N= 40, JTYPE= 12, ISEED=( 2195, 634, 3653, 1853)
SBD -- Real Singular Value Decomposition
Matrix types (see xCHKBD for details):
Diagonal matrices:
1: Zero 5: Clustered entries
2: Identity 6: Large, evenly spaced entries
3: Evenly spaced entries 7: Small, evenly spaced entries
4: Geometrically spaced entries
General matrices:
8: Evenly spaced sing. vals. 12: Small, evenly spaced sing vals
9: Geometrically spaced sing vals 13: Random, O(1) entries
10: Clustered sing. vals. 14: Random, scaled near overflow
11: Large, evenly spaced sing vals 15: Random, scaled near underflow
Test ratios: (B: bidiagonal, S: diagonal, Q, P, U, and V: orthogonal
X: m x nrhs, Y = Q' X, and Z = U' Y)
1: norm( A - Q B P' ) / ( norm(A) max(m,n) ulp )
2: norm( I - Q' Q ) / ( m ulp )
3: norm( I - P' P ) / ( n ulp )
4: norm( B - U S V' ) / ( norm(B) min(m,n) ulp )
5: norm( Y - U Z ) / ( norm(Z) max(min(m,n),k) ulp )
6: norm( I - U' U ) / ( min(m,n) ulp )
7: norm( I - V' V ) / ( min(m,n) ulp )
8: Test ordering of S (0 if nondecreasing, 1/ulp otherwise)
9: norm( S - S2 ) / ( norm(S) ulp ), where S2 is computed
without computing U and V'
10: Sturm sequence test (0 if sing. vals of B within THRESH of S)
11: norm( A - (QU) S (V' P') ) / ( norm(A) max(m,n) ulp )
12: norm( X - (QU) Z ) / ( |X| max(M,k) ulp )
13: norm( I - (QU)'(QU) ) / ( M ulp )
14: norm( I - (V' P') (P V) ) / ( N ulp )
M= 30, N= 40, type 12, seed=2195, 634,3653,1853, test(15)= .8389E+07
SBD: 1 out of 5510 tests failed to pass the threshold
*** Error code from SCHKBD = 1
--------
csep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 9
All tests for CST passed the threshold ( 3276 tests run)
CST -- Complex Hermitian eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See cdrvst.f
Matrix order= 20, type= 9, seed=1494,3156,1807,2209, result 47 is 1.006E+04
Matrix order= 20, type= 9, seed=1494,3156,1807,2209, result 101 is 114.52
CST drivers: 2 out of 11664 tests failed to pass the threshold
--------
zsep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 9
All tests for ZST passed the threshold ( 3276 tests run)
ZST -- Complex Hermitian eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See cdrvst.f
Matrix order= 5, type=10, seed= 791,4087,1614,3401, result 46 is NaNQ
Matrix order= 5, type=10, seed= 791,4087,1614,3401, result 47 is 4.504D+15
Matrix order= 5, type=10, seed= 791,4087,1614,3401, result 48 is NaNQ
ZST drivers: 3 out of 11664 tests failed to pass the threshold
----- Date reported: November, 1999
=======================================================================
=======================================================================
IBM RISC/6000 model 550
OS: AIX VERSION 4.1
COMPILER: XL FORTRAN Compiler Version 4.1
LAPACK, version 3.0
FORTRAN = xlf
OPTS = -O3 -qmaxmem=-1
(except -O2 for LAPACK/SRC/cgelsx.f )
(except -O2 for LAPACK/TESTING/LIN/zchktp.f )
(except -O2 for LAPACK/TIMING/EIG/deispack.f and
LAPACK/TIMING/EIG/zeispack.f )
DRVOPTS = $(OPTS)
NOOPT =
LOADER = xlf
LOADOPTS =
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
BLASLIB = -lessl
BLAS: (ESSL version 2.2.2.2)
Notes:
(1) use XLF-supplied routine ETIME_ for second.f and dsecnd.f
Test status: Expected failures in _gd.out;
Failure in dsvd.out (under investigation);
Failures in dsep.out and zsep.out (under investigation).
--------
dsvd.out
--------
SVD: NB = 1, NBMIN = 2, NX = 1, NRHS = 2
DCHKBD: DBDSDC(vects) returned INFO= 1.
M= 30, N= 40, JTYPE= 12, ISEED=( 2195, 634, 3653, 1853)
DBD -- Real Singular Value Decomposition
Matrix types (see xCHKBD for details):
Diagonal matrices:
1: Zero 5: Clustered entries
2: Identity 6: Large, evenly spaced entries
3: Evenly spaced entries 7: Small, evenly spaced entries
4: Geometrically spaced entries
General matrices:
8: Evenly spaced sing. vals. 12: Small, evenly spaced sing vals
9: Geometrically spaced sing vals 13: Random, O(1) entries
10: Clustered sing. vals. 14: Random, scaled near overflow
11: Large, evenly spaced sing vals 15: Random, scaled near underflow
Test ratios: (B: bidiagonal, S: diagonal, Q, P, U, and V: orthogonal
X: m x nrhs, Y = Q' X, and Z = U' Y)
1: norm( A - Q B P' ) / ( norm(A) max(m,n) ulp )
2: norm( I - Q' Q ) / ( m ulp )
3: norm( I - P' P ) / ( n ulp )
4: norm( B - U S V' ) / ( norm(B) min(m,n) ulp )
5: norm( Y - U Z ) / ( norm(Z) max(min(m,n),k) ulp )
6: norm( I - U' U ) / ( min(m,n) ulp )
7: norm( I - V' V ) / ( min(m,n) ulp )
8: Test ordering of S (0 if nondecreasing, 1/ulp otherwise)
9: norm( S - S2 ) / ( norm(S) ulp ), where S2 is computed
without computing U and V'
10: Sturm sequence test (0 if sing. vals of B within THRESH of S)
11: norm( A - (QU) S (V' P') ) / ( norm(A) max(m,n) ulp )
12: norm( X - (QU) Z ) / ( |X| max(M,k) ulp )
13: norm( I - (QU)'(QU) ) / ( M ulp )
14: norm( I - (V' P') (P V) ) / ( N ulp )
M= 30, N= 40, type 12, seed=2195, 634,3653,1853, test(15)= .4504E+16
DBD: 1 out of 5510 tests failed to pass the threshold
*** Error code from DCHKBD = 1
--------
dsep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 5
DST -- Real Symmetric eigenvalue problem
Matrix types (see DCHKST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
Test performed: see DCHKST for details.
N= 40, seed=1451, 418,3916,1509, type 9, test(35)= .335E+12
N= 40, seed=1451, 418,3916,1509, type 9, test(36)= .269E+15
DST: 2 out of 4662 tests failed to pass the threshold
All tests for DST drivers passed the threshold ( 14256 tests run)
--------
zsep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 0
ZST -- Complex Hermitian eigenvalue problem
Matrix types (see ZCHKST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
Test performed: see ZCHKST for details.
Matrix order= 40, type= 9, seed= 419, 892, 345,2089, result 35 is 2.756D+12
Matrix order= 40, type= 9, seed= 419, 892, 345,2089, result 36 is 3.073D+14
ZST: 2 out of 4662 tests failed to pass the threshold
All tests for ZST drivers passed the threshold ( 11664 tests run)
----- Date reported: April, 1999
=======================================================================
=======================================================================
Intel Pentium 120MHz (IBM Thinkpad 760E)
Linux 2.0.34
g77 (version egcs-2.91.60)
LAPACK, version 3.0
FORTRAN = g77
OPTS = -g
DRVOPTS = $(OPTS)
NOOPT = -g
LOADER = g77
LOADOPTS = -g
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
BLASLIB = Fortran 77 BLAS
Test status: Expected failures in _gd.out;
Two failures in ded.out (DES, DSX);
One failure in dgg.out (DGG);
-------
ded.out
-------
DGEES passed the tests of the error exits ( 6 tests done)
DDRVES: DGEES1 returned INFO= 6.
N= 5, JTYPE= 17, ISEED=( 100, 2082, 33, 613)
DES -- Real Schur Form Decomposition Driver
Matrix types (see DDRVES for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: geometr. spaced entries.
2=Identity matrix. 6=Diagonal: clustered entries.
3=Transposed Jordan block. 7=Diagonal: large, evenly spaced.
4=Diagonal: evenly spaced entries. 8=Diagonal: small, evenly spaced.
Dense, Non-Symmetric Matrices:
9=Well-cond., evenly spaced eigenvals. 14=Ill-cond., geomet. spaced eigenals.
10=Well-cond., geom. spaced eigenvals. 15=Ill-conditioned, clustered e.vals.
11=Well-conditioned, clustered e.vals. 16=Ill-cond., random complex
12=Well-cond., random complex 17=Ill-cond., large rand. complx
13=Ill-conditioned, evenly spaced. 18=Ill-cond., small rand. complx
19=Matrix with random O(1) entries. 21=Matrix with small random entries.
20=Matrix with large random entries.
Tests performed with test threshold = 20.00
( A denotes A on input and T denotes A on output)
1 = 0 if T in Schur form (no sort), 1/ulp otherwise
2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)
3 = | I - VS transpose(VS) | / ( n ulp ) (no sort)
4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort), 1/ulp otherwise
5 = 0 if T same no matter if VS computed (no sort), 1/ulp otherwise
6 = 0 if WR, WI same no matter if VS computed (no sort), 1/ulp otherwise
7 = 0 if T in Schur form (sort), 1/ulp otherwise
8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)
9 = | I - VS transpose(VS) | / ( n ulp ) (sort)
10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort), 1/ulp otherwise
11 = 0 if T same no matter if VS computed (sort), 1/ulp otherwise
12 = 0 if WR, WI same no matter if VS computed (sort), 1/ulp otherwise
13 = 0 if sorting succesful, 1/ulp otherwise
N= 5, IWK= 2, seed= 100,2082, 33, 613, type 17, test( 7)= 0.450E+16
DES: 1 out of 3270 tests failed to pass the threshold
*** Error code from DGEES = 6
...
DGEESX passed the tests of the error exits ( 7 tests done)
DGET24: DGEESX1 returned INFO= 6.
N= 5, JTYPE= 17, ISEED=( 100, 2082, 33, 613)
DSX -- Real Schur Form Decomposition Expert Driver
Matrix types (see DDRVSX for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: geometr. spaced entries.
2=Identity matrix. 6=Diagonal: clustered entries.
3=Transposed Jordan block. 7=Diagonal: large, evenly spaced.
4=Diagonal: evenly spaced entries. 8=Diagonal: small, evenly spaced.
Dense, Non-Symmetric Matrices:
9=Well-cond., evenly spaced eigenvals. 14=Ill-cond., geomet. spaced eigenals.
10=Well-cond., geom. spaced eigenvals. 15=Ill-conditioned, clustered e.vals.
11=Well-conditioned, clustered e.vals. 16=Ill-cond., random complex
12=Well-cond., random complex 17=Ill-cond., large rand. complx
13=Ill-conditioned, evenly spaced. 18=Ill-cond., small rand. complx
19=Matrix with random O(1) entries. 21=Matrix with small random entries.
20=Matrix with large random entries.
Tests performed with test threshold = 20.00
( A denotes A on input and T denotes A on output)
1 = 0 if T in Schur form (no sort), 1/ulp otherwise
2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)
3 = | I - VS transpose(VS) | / ( n ulp ) (no sort)
4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort), 1/ulp otherwise
5 = 0 if T same no matter if VS computed (no sort), 1/ulp otherwise
6 = 0 if WR, WI same no matter if VS computed (no sort), 1/ulp otherwise
7 = 0 if T in Schur form (sort), 1/ulp otherwise
8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)
9 = | I - VS transpose(VS) | / ( n ulp ) (sort)
10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort), 1/ulp otherwise
11 = 0 if T same no matter what else computed (sort), 1/ulp otherwise
12 = 0 if WR, WI same no matter what else computed (sort), 1/ulp otherwise
13 = 0 if sorting succesful, 1/ulp otherwise
14 = 0 if RCONDE same no matter what else computed, 1/ulp otherwise
15 = 0 if RCONDv same no matter what else computed, 1/ulp otherwise
16 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),
17 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),
N= 5, IWK= 2, seed= 100,2082, 33, 613, type 17, test( 7)= 0.450E+16
DSX: 1 out of 3500 tests failed to pass the threshold
-------
dgg.out
-------
DGG: NB = 2, NBMIN = 2, NS = 4, MAXB = 2, NBCOL = 2
DCHKGG: DHGEQZ(E) returned INFO= 9.
N= 16, JTYPE= 18, ISEED=( 740, 2515, 3243, 3753)
DGG -- Real Generalized eigenvalue problem
Matrix types (see DCHKGG for details):
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Orthogonal Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.
Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are orthogonal, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and ' means transpose.)
1 = | A - U H V' | / ( |A| n ulp ) 2 = | B - U T V' | / ( |B| n ulp )
3 = | I - UU' | / ( n ulp ) 4 = | I - VV' | / ( n ulp )
5 = | H - Q S Z' | / ( |H| n ulp ) 6 = | T - Q P Z' | / ( |T| n ulp )
7 = | I - QQ' | / ( n ulp ) 8 = | I - ZZ' | / ( n ulp )
9 = max | ( b S - a P )' l | / const. 10 = max | ( b H - a T )' l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.
Matrix order= 16, type=18, seed= 740,2515,3243,3753, result 5 is 4.504E+15
DGG: 1 out of 2177 tests failed to pass the threshold
*** Error code from DCHKGG = 9
All tests for DGG drivers passed the threshold ( 1274 tests run)
----- Date reported: May, 1999
=======================================================================
=======================================================================
Intel Pentium II 300MHz
RedHat Linux 2.2.5-15
g77 (version egcs-2.91.66)
LAPACK, version 3.0 + UPDATE
FORTRAN = g77
OPTS = -funroll-all-loops -fno-f2c -O3
DRVOPTS = $(OPTS)
NOOPT =
LOADER = g77
LOADOPTS = $(OPTS)
ARCH = ar
ARCHFLAGS= cr
RANLIB = ranlib
BLASLIB = Fortran 77 BLAS
Test status: Expected failures in _gd.out;
Failure in cgbak.out (under investigation);
Failures in ssep.out/csep.out (under investigation);
---------
cgbak.out
---------
.. test output of CGGBAK ..
value of largest test error = 0.796E+04
example number where CGGBAL info is not 0 = 0
example number where CGGBAK(L) info is not 0 = 0
example number where CGGBAK(R) info is not 0 = 0
example number having largest error = 5
number of examples where info is not 0 = 0
total number of examples tested = 10
End of tests
Total time used = 0.04 seconds
--------
ssep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 9
SST -- Real Symmetric eigenvalue problem
Matrix types (see SCHKST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
Test performed: see SCHKST for details.
N= 20, seed= 443,2933, 429,1581, type 9, test(35)= 0.224E+05
N= 20, seed= 443,2933, 429,1581, type 9, test(36)= 0.207E+07
SST: 2 out of 4662 tests failed to pass the threshold
--------
csep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 9
CST -- Complex Hermitian eigenvalue problem
Matrix types (see CCHKST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
Test performed: see CCHKST for details.
Matrix order= 20, type= 9, seed=1052,3651,3662,3633, result 35 is 88.19
Matrix order= 20, type= 9, seed=1052,3651,3662,3633, result 36 is 2616.94
CST: 2 out of 4662 tests failed to pass the threshold
CST -- Complex Hermitian eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See cdrvst.f
Matrix order= 20, type= 9, seed=1494,3156,1807,2209, result 46 is 8.389E+06
Matrix order= 20, type= 9, seed=1494,3156,1807,2209, result 47 is 8.389E+06
CST drivers: 2 out of 11664 tests failed to pass the threshold
----- Date reported: November, 1999
=======================================================================
=======================================================================
Intel PentiumII PC
OS: Linux (SuSE 6.1)
COMPILER: Portland Group pgf77, version 3.0
COMPILER OPTIONS: -tp p6 -pc 64 -mp -O2 -Munroll
BLAS: Optimized BLAS for PentiumII/Pro, obtained from
http://www.cs.utk.edu/~ghenry/distrib/
LAPACK, version 3.0
Test status: Expected failures in _gd.out;
----- Date reported: October, 1999
=======================================================================
=======================================================================
Intel Pentium PPro
OS: Windows NT 4.0
COMPILER: Watcom Fortran 77/32 Compiler Version 11.0
LAPACK, version 3.0
FORTRAN = wfc386
OPTS = -EXP -NOER -NOR
DRVOPTS = -EXP -NOER -NOR
NOOPT = -EXP -NOER -NOR
LOADER = wlink
LOADOPTS =
ARCH = wlib
ARCHFLAGS= -b -fa
RANLIB = echo
BLASLIB = ..\..\blas_win32.lib
(Fortran 77 reference implementation)
Notes:
(1) separate LAPACK distribution file:
http://www.netlib.org/lapack/lapack-pc-wfc.zip
(2) use CLOCK() for second.f and dsecnd.f
(3) Set ILAENV=0 for ISPEC=10 and ISPEC=11 in lapack\src\ilaenv.f, as
well as the specialized versions of ILAENV in testing\lin\, testing\eig\,
timing\lin\, and timing\eig\.
Test status: Expected failures in _gd.out;
----- Date reported: August, 1999
=======================================================================
=======================================================================
Intel Pentium PPro
OS: Windows NT 4.0
COMPILER: Digital Fortran
LAPACK, version 3.0 + UPDATES
FORTRAN = df
OPTS = -optimize:2
DRVOPTS = $(OPTS)
NOOPT = -optimize:0
LOADER = $(FORTRAN)
LOADOPTS =
ARCH = lib
ARCHFLAGS= -out:
RANLIB = echo
BLASLIB = ..\..\blas_win32.lib
(Fortran 77 reference implementation)
Notes:
(1) separate LAPACK distribution file:
http://www.netlib.org/lapack/lapack-pc-df.zip
(2) use SECNDS() for second.f and dsecnd.f
(3) Set ILAENV=0 for ISPEC=10 and ISPEC=11 in lapack\src\ilaenv.f, as
well as the specialized versions of ILAENV in testing\lin\, testing\eig\,
timing\lin\, and timing\eig\.
Test status: Expected failures in _gd.out;
----- Date reported: August, 1999
=======================================================================
=======================================================================
SGI Indigo, IRIX Release 6.5, IP28, f77, MIPSpro version 7.2.1
LAPACK, version 3.0
FORTRAN = f77
OPTS = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
DRVOPTS = $(OPTS) -static
NOOPT = -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
LOADER = f77
LOADOPTS = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
ARCH = ar
ARCHFLAGS= cr
RANLIB = echo
BLASLIB = -lblas
BLAS: -lblas (bug in SDOT, so must link with Fortran 77 SDOT)
Notes:
(1) Set SHELL = /sbin/sh in make.inc.
(2) Compiler options -trapuv and -OPT:IEEE_NaN_inf=ON cannot
be used together.
Test status: Expected failures in _gd.out;
Failures in stest.out, ssep.out and zsep.out.
---------
stest.out
---------
SLS: Least squares driver routines
Matrix types (1-3: full rank, 4-6: rank deficient):
1 and 4. Normal scaling
2 and 5. Scaled near overflow
3 and 6. Scaled near underflow
Test ratios:
(1-2: SGELS, 3-6: SGELSX, 7-10: SGELSY, 11-14: SGELSS, 15-18: SGELSD)
1: norm( B - A * X ) / ( max(M,N) * norm(A) * norm(X) * EPS )
2: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
if TRANS='N' and M.GE.N or TRANS='T' and M.LT.N, otherwise
check if X is in the row space of A or A' (overdetermined case)
3: norm(svd(A)-svd(R)) / ( min(M,N) * norm(svd(R)) * EPS )
4: norm( B - A * X ) / ( max(M,N) * norm(A) * norm(X) * EPS )
5: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
6: Check if X is in the row space of A or A'
7-10: same as 3-6 11-14: same as 3-6 15-18: same as 3-6
Messages:
TRANS='N', M= 16, N= 1, NRHS= 15, NB= 20, type 3, test( 1)= 91.327
TRANS='T', M= 16, N= 2, NRHS= 15, NB= 3, type 3, test( 1)= 47.908
SLS drivers: 2 out of 65268 tests failed to pass the threshold
--------
ssep.out
--------
SST -- Real Symmetric eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See sdrvst.f
Matrix order= 40, type= 9, seed= 905, 436,1903, 257, result 71 is 4.204E+05
SST drivers: 1 out of 14256 tests failed to pass the threshold
--------
zsep.out
--------
ZST -- Complex Hermitian eigenvalue problem
Matrix types (see ZCHKST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
Test performed: see ZCHKST for details.
Matrix order= 40, type= 9, seed= 869,2319,1455, 761, result 35 is 9.007D+15
Matrix order= 40, type= 9, seed= 869,2319,1455, 761, result 36 is 9.007D+15
ZST: 2 out of 4662 tests failed to pass the threshold
----- Date reported: April, 1999
=======================================================================
=======================================================================
SGI Octane, IRIX Release 6.5, R12000 IP30, f77, MIPSpro version 7.3.0
LAPACK, version 3.0 + update
FORTRAN = f77
OPTS = -g -DEBUG:subscript_check=ON -OPT:IEEE_NaN_inf=ON
DRVOPTS = $(OPTS) -static -TENV:large_GOT:ON
NOOPT = -g -DEBUG:subscript_check=ON -OPT:IEEE_NaN_inf=ON
LOADER = f77
LOADOPTS = -g -DEBUG:subscript_check=ON -OPT:IEEE_NaN_inf=ON
ARCH = ar
ARCHFLAGS= cr
RANLIB = echo
BLASLIB = -lblas
Notes:
(1) Set SHELL = /sbin/sh in make.inc.
(2) Compiler options -trapuv and -OPT:IEEE_NaN_inf=ON cannot
be used together. And it seems that optimization also
disables -OPT:IEEE_NaN_inf=ON, as the LAPACK/INSTALL/tstieee
test fails if both are used.
Test status: Expected failures in _gd.out;
Minor failures (SPB and SLS) in stest.out;
Minor failures in ssvd.out;
Failures in ssep.out (under investigation);
Failure in cgbak.out (under investigation);
---------
stest.out
---------
SPB: Symmetric positive definite band matrices
Matrix types:
1. Random, CNDNUM = 2 5. Random, CNDNUM = sqrt(0.1/EPS)
*2. First row and column zero 6. Random, CNDNUM = 0.1/EPS
*3. Last row and column zero 7. Scaled near underflow
*4. Middle row and column zero 8. Scaled near overflow
(* - tests error exits from SPBTRF, no test ratios are computed)
Test ratios:
1: norm( U' * U - A ) / ( N * norm(A) * EPS ), or
norm( L * L' - A ) / ( N * norm(A) * EPS )
2: norm( B - A * X ) / ( norm(A) * norm(X) * EPS )
3: norm( X - XACT ) / ( norm(XACT) * CNDNUM * EPS )
4: norm( X - XACT ) / ( norm(XACT) * CNDNUM * EPS ), refined
5: norm( X - XACT ) / ( norm(XACT) * (error bound) )
6: (backward error) / EPS
7: RCOND * CNDNUM - 1.0
Messages:
UPLO='L', N= 50, KD= 37, NRHS= 15, type 7, test( 3) = 39.913
SPB: 1 out of 3458 tests failed to pass the threshold
SLS: Least squares driver routines
Matrix types (1-3: full rank, 4-6: rank deficient):
1 and 4. Normal scaling
2 and 5. Scaled near overflow
3 and 6. Scaled near underflow
Test ratios:
(1-2: SGELS, 3-6: SGELSX, 7-10: SGELSY, 11-14: SGELSS, 15-18: SGELSD)
1: norm( B - A * X ) / ( max(M,N) * norm(A) * norm(X) * EPS )
2: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
if TRANS='N' and M.GE.N or TRANS='T' and M.LT.N, otherwise
check if X is in the row space of A or A' (overdetermined case)
3: norm(svd(A)-svd(R)) / ( min(M,N) * norm(svd(R)) * EPS )
4: norm( B - A * X ) / ( max(M,N) * norm(A) * norm(X) * EPS )
5: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
6: Check if X is in the row space of A or A'
7-10: same as 3-6 11-14: same as 3-6 15-18: same as 3-6
Messages:
TRANS='T', M= 50, N= 1, NRHS= 2, NB= 3, type 3, test( 1)= 139.96
TRANS='T', M= 50, N= 1, NRHS= 15, NB= 3, type 3, test( 1)= 1235.6
TRANS='T', M= 50, N= 1, NRHS= 15, NB= 3, type 3, test( 1)= 91.860
SLS drivers: 3 out of 65268 tests failed to pass the threshold
--------
ssep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 9
SST -- Real Symmetric eigenvalue problem
Matrix types (see SCHKST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
Test performed: see SCHKST for details.
N= 20, seed= 443,2933, 429,1581, type 9, test(35)= 0.681E+04
N= 20, seed= 443,2933, 429,1581, type 9, test(36)= 0.195E+07
SST: 2 out of 4662 tests failed to pass the threshold
SST -- Real Symmetric eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See sdrvst.f
Matrix order= 20, type= 9, seed=3966,3411,3597,2265, result 71 is 104.82
Matrix order= 20, type= 9, seed=3966,3411,3597,2265, result 72 is 61.70
SST drivers: 2 out of 14256 tests failed to pass the threshold
---------
cgbak.out
---------
.. test output of CGGBAK ..
value of largest test error = 0.796E+04
example number where CGGBAL info is not 0 = 0
example number where CGGBAK(L) info is not 0 = 0
example number where CGGBAK(R) info is not 0 = 0
example number having largest error = 5
number of examples where info is not 0 = 0
total number of examples tested = 10
End of tests
Total time used = 0.01 seconds
----- Date reported: December, 1999
=======================================================================
=======================================================================
SGI O2K, IRIX Release 6.5, R12000 IP27, f77, MIPSpro version 7.2.1.2
LAPACK, version 3.0
FORTRAN = f77
OPTS = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
DRVOPTS = $(OPTS) -static
NOOPT = -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
LOADER = f77
LOADOPTS = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
ARCH = ar
ARCHFLAGS= cr
RANLIB = echo
BLASLIB = -lblas
Notes:
(1) Set SHELL = /sbin/sh in make.inc.
(2) Compiler options -trapuv and -OPT:IEEE_NaN_inf=ON cannot
be used together.
Test status: Expected failures in _gd.out;
Minor failures in stest.out;
---------
stest.out
---------
SLS: Least squares driver routines
Matrix types (1-3: full rank, 4-6: rank deficient):
1 and 4. Normal scaling
2 and 5. Scaled near overflow
3 and 6. Scaled near underflow
Test ratios:
(1-2: SGELS, 3-6: SGELSX, 7-10: SGELSY, 11-14: SGELSS, 15-18: SGELSD)
1: norm( B - A * X ) / ( max(M,N) * norm(A) * norm(X) * EPS )
2: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
if TRANS='N' and M.GE.N or TRANS='T' and M.LT.N, otherwise
check if X is in the row space of A or A' (overdetermined case)
3: norm(svd(A)-svd(R)) / ( min(M,N) * norm(svd(R)) * EPS )
4: norm( B - A * X ) / ( max(M,N) * norm(A) * norm(X) * EPS )
5: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
6: Check if X is in the row space of A or A'
7-10: same as 3-6 11-14: same as 3-6 15-18: same as 3-6
Messages:
TRANS='N', M= 16, N= 1, NRHS= 15, NB= 20, type 3, test( 1)= 91.243
TRANS='T', M= 16, N= 2, NRHS= 15, NB= 3, type 3, test( 1)= 47.768
SLS drivers: 2 out of 65268 tests failed to pass the threshold
----- Date reported: May, 1999
=======================================================================
=======================================================================
SUN Ultra-2, Solaris 2.7, f77 (SC 5.0)
LAPACK, version 3.0 + patches from release_notes.html
FORTRAN = f77
OPTS = -f -dalign -native -xO5 -xarch=v8plusa
DRVOPTS = $(OPTS)
NOOPT = -f
LOADER = f77
LOADOPTS = -f -dalign -native -xO5 -xarch=v8plusa
ARCH = ar
ARCHFLAGS= cr
RANLIB = echo
BLASLIB = -xlic_lib=sunperf
BLAS: Sun Performance Library BLAS
Notes:
(1) If using "f90" instead of "f77", I strangely need to add
"-lF77" to link line in LAPACK/TESTING/LIN/Makefile and
LAPACK/TESTING/EIG/Makefile, or else the link fails with
missing Fortran77 I/0 routines.
Similarly for makefiles in LAPACK/TIMING.
(2) If using "f90" instead of "f77" compiler, you MUST additionally
supply "-ftrap=%none". The defaults for IEEE arithmetic
using "f77" and "f90" are not the same!
The f90 default is -ftrap=common. (Note that the default with
f77 is -ftrap=%none.) See "man f90" for full details.
Test status: Expected failures in _gd.out;
Failure in dsvd.out and zsvd.out;
One minor failure in zsep.out;
--------
dsvd.out
--------
DBD -- Real Singular Value Decomposition
Matrix types (see xCHKBD for details):
Diagonal matrices:
1: Zero 5: Clustered entries
2: Identity 6: Large, evenly spaced entries
3: Evenly spaced entries 7: Small, evenly spaced entries
4: Geometrically spaced entries
General matrices:
8: Evenly spaced sing. vals. 12: Small, evenly spaced sing vals
9: Geometrically spaced sing vals 13: Random, O(1) entries
10: Clustered sing. vals. 14: Random, scaled near overflow
11: Large, evenly spaced sing vals 15: Random, scaled near underflow
Test ratios: (B: bidiagonal, S: diagonal, Q, P, U, and V: orthogonal
X: m x nrhs, Y = Q' X, and Z = U' Y)
1: norm( A - Q B P' ) / ( norm(A) max(m,n) ulp )
2: norm( I - Q' Q ) / ( m ulp )
3: norm( I - P' P ) / ( n ulp )
4: norm( B - U S V' ) / ( norm(B) min(m,n) ulp )
5: norm( Y - U Z ) / ( norm(Z) max(min(m,n),k) ulp )
6: norm( I - U' U ) / ( min(m,n) ulp )
7: norm( I - V' V ) / ( min(m,n) ulp )
8: Test ordering of S (0 if nondecreasing, 1/ulp otherwise)
9: norm( S - S2 ) / ( norm(S) ulp ), where S2 is computed
without computing U and V'
10: Sturm sequence test (0 if sing. vals of B within THRESH of S)
11: norm( A - (QU) S (V' P') ) / ( norm(A) max(m,n) ulp )
12: norm( X - (QU) Z ) / ( |X| max(M,k) ulp )
13: norm( I - (QU)'(QU) ) / ( M ulp )
14: norm( I - (V' P') (P V) ) / ( N ulp )
M= 40, N= 30, type 16, seed=3445,2073,3188, 129, test( 9)= 0.4502E+16
DBD: 1 out of 5510 tests failed to pass the threshold
----- Date reported: April, 2000
=======================================================================
=======================================================================
SUN Ultra-2, Solaris 2.5.1, f77 (SC 5.0)
LAPACK, version 3.0
FORTRAN = f77
OPTS = -u -f -dalign -native -xO5 -xarch=v8plusa
DRVOPTS = $(OPTS)
NOOPT = -u -f
LOADER = f77
LOADOPTS = -f -dalign -native -xO5 -xarch=v8plusa
ARCH = ar
ARCHFLAGS= cr
RANLIB = echo
BLASLIB = -xlic_lib=sunperf
BLAS: Sun Performance Library BLAS
Test status: Expected failures in _gd.out;
Two failures in ssep.out, one minor failure in zsep.out;
IEEE warning exceptions of "Division by Zero" and
"Invalid Operation" in ssep.out, dsep.out, csep.out,
and zsep.out, as a result of ILAENV IEEECK test;
--------
ssep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 0
All tests for SST passed the threshold ( 4662 tests run)
SST -- Real Symmetric eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See sdrvst.f
Matrix order= 20, type= 9, seed=2570,2010,1676,1489, result 124 is 1.577E+05
Matrix order= 20, type= 9, seed=2570,2010,1676,1489, result 125 is 6.605E+05
SST drivers: 2 out of 14256 tests failed to pass the threshold
--------
zsep.out
--------
SEP: NB = 3, NBMIN = 2, NX = 9
All tests for ZST passed the threshold ( 4662 tests run)
ZST -- Complex Hermitian eigenvalue problem
Matrix types (see xDRVST for details):
Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
Tests performed: See cdrvst.f
Matrix order= 20, type=10, seed=3336, 516, 978,2569, result 71 is 59.27
ZST drivers: 1 out of 11664 tests failed to pass the threshold
---- Date reported: April, 1999
======================================================================
|