File: node102.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (1098 lines) | stat: -rw-r--r-- 32,340 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Overview</TITLE>
<META NAME="description" CONTENT="Overview">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node103.html">
<LINK REL="previous" HREF="node101.html">
<LINK REL="up" HREF="node101.html">
<LINK REL="next" HREF="node103.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5626"
 HREF="node103.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5620"
 HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5614"
 HREF="node101.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5622"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5624"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5627"
 HREF="node103.html">Balancing and Conditioning</A>
<B> Up:</B> <A NAME="tex2html5621"
 HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5615"
 HREF="node101.html">Further Details: Error Bounds</A>
 &nbsp <B>  <A NAME="tex2html5623"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5625"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION034111100000000000000"></A><A NAME="GNEP311"></A>
<BR>
Overview
</H3>
In this subsection, we summarize all the available error bounds.
Later sections will provide further details.
The error bounds presented here apply to regular matrix pairs only.

<P>
Bounds for individual eigenvalues and eigenvectors are provided by
the driver
xGGEVX<A NAME="12138"></A><A NAME="12139"></A><A NAME="12140"></A><A NAME="12141"></A>
(subsection <A HREF="node35.html#sec_gnep_driver">2.3.5.2</A>)
or the computational routine xTGSNA
<A NAME="12143"></A><A NAME="12144"></A><A NAME="12145"></A><A NAME="12146"></A>
(subsection <A HREF="node55.html#sec_gnep_comp">2.4.8</A>).
Bounds for cluster of eigenvalues
<A NAME="12148"></A>
and their associated pair of deflating
subspaces are provided by the driver
xGGESX<A NAME="12149"></A><A NAME="12150"></A><A NAME="12151"></A><A NAME="12152"></A>
(subsection <A HREF="node35.html#sec_gnep_driver">2.3.5.2</A>) or the
computational routine xTGSEN
<A NAME="12154"></A><A NAME="12155"></A><A NAME="12156"></A><A NAME="12157"></A>
(subsection <A HREF="node55.html#sec_gnep_comp">2.4.8</A>).
<A NAME="12159"></A>

<P>
We let 
<!-- MATH
 $({\hat{\alpha}}_i, {\hat{\beta}}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img727.png"
 ALT="$({\hat{\alpha}}_i, {\hat{\beta}}_i)$">
be the <B><I>i</I><SUP><I>th</I></SUP></B> computed
eigenvalue pair and 
<!-- MATH
 $({\alpha}_i, {\beta}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img725.png"
 ALT="$({\alpha}_i, {\beta}_i)$">
the <B><I>i</I><SUP><I>th</I></SUP></B> exact eigenvalue
pair.<A NAME="tex2html2442"
 HREF="footnode.html#foot13385"><SUP>4.2</SUP></A>Let <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img356.png"
 ALT="$\hat{x}_i$">
and <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img760.png"
 ALT="$\hat{y}_i$">
be the corresponding computed right
and left eigenvectors, and <B><I>x</I><SUB><I>i</I></SUB></B> and <B><I>y</I><SUB><I>i</I></SUB></B> the exact right and left
eigenvectors (so that 
<!-- MATH
 ${\beta}_i A x_i = {\alpha}_i B x_i$
 -->
<IMG
 WIDTH="117" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img726.png"
 ALT="${\beta}_i A x_i = {\alpha}_i B x_i$">
and

<!-- MATH
 ${\beta}_i y_i^H A  = {\alpha}_i y_i^H B$
 -->
<IMG
 WIDTH="131" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img761.png"
 ALT="${\beta}_i y_i^H A = {\alpha}_i y_i^H B$">).
As in the standard nonsymmetric eigenvalue problem, we also want to
bound the error in the average of a cluster of eigenvalues, corresponding
to a subset <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
of the integers from 1 to <B><I>n</I></B>.
However, since there are both finite and infinite eigenvalues,
we need a proper definition for the average of the eigenvalues

<!-- MATH
 ${\lambda}_i = {\alpha}_i/{\beta}_i$
 -->
<IMG
 WIDTH="84" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img192.png"
 ALT="$\lambda_i = \alpha_i / \beta_i$">
for 
<!-- MATH
 $i \in {\cal I}$
 -->
<IMG
 WIDTH="43" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img762.png"
 ALT="$i \in {\cal I}$">.
Here we let 
<!-- MATH
 $( {\alpha}_{\cal I}, {\beta}_{\cal I} )$
 -->
<IMG
 WIDTH="65" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img763.png"
 ALT="$( {\alpha}_{\cal I}, {\beta}_{\cal I} )$">
denote the average of the selected eigenvalues<A NAME="tex2html2443"
 HREF="footnode.html#foot13386"><SUP>4.3</SUP></A>:

<!-- MATH
 $( {\alpha}_{\cal I}, {\beta}_{\cal I} ) =
  (\sum_{i \in {\cal I}} {\alpha}_i, \sum_{i \in {\cal I}} {\beta}_i )/
  (\sum_{i \in {\cal I}} 1)$
 -->
<IMG
 WIDTH="300" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img766.png"
 ALT="$( {\alpha}_{\cal I}, {\beta}_{\cal I} ) =
(\sum_{i \in {\cal I}} {\alpha}_i, \sum_{i \in {\cal I}} {\beta}_i )/
(\sum_{i \in {\cal I}} 1)$">,
and similarly for

<!-- MATH
 $( \hat{{\alpha}}_{\cal I}, \hat{{\beta}}_{\cal I} )$
 -->
<IMG
 WIDTH="65" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img767.png"
 ALT="$( \hat{{\alpha}}_{\cal I}, \hat{{\beta}}_{\cal I} )$">.
We also let 
<!-- MATH
 ${\cal L}_{\cal I}$
 -->
<IMG
 WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img768.png"
 ALT="${\cal L}_{\cal I}$">
and 
<!-- MATH
 ${\cal R}_{\cal I}$
 -->
<IMG
 WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img769.png"
 ALT="${\cal R}_{\cal I}$">
denote the
exact pair of left
and right deflating subspaces associated with the cluster of selected
eigenvalues.
Similarly, 
<!-- MATH
 $\widehat{{\cal L}}_{\cal I}$
 -->
<IMG
 WIDTH="26" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img770.png"
 ALT="$\widehat{{\cal L}}_{\cal I}$">
and

<!-- MATH
 $\widehat{{\cal R}}_{\cal I}$
 -->
<IMG
 WIDTH="28" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img771.png"
 ALT="$\widehat{{\cal R}}_{\cal I}$">
are the
corresponding computed pair of left and right deflating subspaces.

<P>
The algorithms for the generalized nonsymmetric eigenproblem are normwise
backward stable;
<A NAME="12230"></A>
<A NAME="12231"></A>
the computed eigenvalues, eigenvectors and deflating
subspaces are the exact ones of slightly perturbed matrices <B><I>A</I> + <I>E</I></B> and <B><I>B</I> +<I>F</I></B>,
where 
<!-- MATH
 $\|(E, F)\|_F \leq p(n) \epsilon \|(A, B)\|_F$
 -->
<IMG
 WIDTH="222" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img772.png"
 ALT="$\Vert(E, F)\Vert _F \leq p(n) \epsilon \Vert(A, B)\Vert _F$">.
The code fragment in the previous subsection approximates
<IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img773.png"
 ALT="$\Vert(E, F)\Vert _F$">
by 
<!-- MATH
 $\epsilon \cdot {\tt ABNORM}$
 -->
<IMG
 WIDTH="79" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img774.png"
 ALT="$\epsilon \cdot {\tt ABNORM}$">,
where

<!-- MATH
 ${\tt ABNORM} = \sqrt{ {\tt ABNRM}^2 + {\tt BBNRM}^2 }$
 -->
<IMG
 WIDTH="225" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
 SRC="img775.png"
 ALT="${\tt ABNORM} = \sqrt{ {\tt ABNRM}^2 + {\tt BBNRM}^2 }$">,
and the values <TT>ABNRM</TT> and <TT>BBNRM</TT> returned by xGGEVX
are the 1-norm of the matrices <B><I>A</I></B> and <B><I>B</I></B>, respectively.

<P>
xGGEVX (or xTGSNA) returns reciprocal condition numbers
for each eigenvalue pair

<!-- MATH
 $({\hat{\alpha}}_i, {\hat{\beta}}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img727.png"
 ALT="$({\hat{\alpha}}_i, {\hat{\beta}}_i)$">
and corresponding
left and right eigenvectors <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img760.png"
 ALT="$\hat{y}_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img356.png"
 ALT="$\hat{x}_i$">:
<B><I>s</I><SUB><I>i</I></SUB></B> and 
<!-- MATH
 ${\rm Dif}_l(i)$
 -->
<IMG
 WIDTH="54" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img776.png"
 ALT="${\rm Dif}_l(i)$">.
<B><I>s</I><SUB><I>i</I></SUB></B> is a reciprocal condition
number for the computed eigenpair 
<!-- MATH
 $({\hat{\alpha}}_i, {\hat{\beta}}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img727.png"
 ALT="$({\hat{\alpha}}_i, {\hat{\beta}}_i)$">,
and is referred to as <TT>RCONDE(i)</TT> by xGGEVX.
<A NAME="12249"></A>
<A NAME="12250"></A>

<!-- MATH
 ${\rm Dif}_l(i)$
 -->
<IMG
 WIDTH="54" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img776.png"
 ALT="${\rm Dif}_l(i)$">
is a reciprocal condition number for the left and right
eigenvectors <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img760.png"
 ALT="$\hat{y}_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img356.png"
 ALT="$\hat{x}_i$">,
and is referred to as
<TT>RCONDV(i)</TT> by xGGEVX (see subsection <A HREF="node104.html#GNEP33">4.11.1.3</A> for definitions).
Similarly, xGGESX (or xTGSEN) returns condition numbers for
eigenvalue clusters and deflating subspaces corresponding to
a subset <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
of the eigenvalues.
<A NAME="12256"></A>
These are <IMG
 WIDTH="19" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.png"
 ALT="$l_{\cal I}$">
and <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img5.png"
 ALT="$r_{\cal I}$">,
the reciprocal values of
the left and right projection norms <B><I>p</I></B> and <B><I>q</I></B>, and
estimates of the separation between two matrix pairs
defined by 
<!-- MATH
 ${\rm Dif}_u({\cal I})$
 -->
<IMG
 WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img777.png"
 ALT="${\rm Dif}_u({\cal I})$">
and 
<!-- MATH
 ${\rm Dif}_l({\cal I})$
 -->
<IMG
 WIDTH="59" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img778.png"
 ALT="${\rm Dif}_l({\cal I})$">
(see subsection <A HREF="node104.html#GNEP33">4.11.1.3</A> for definitions).
xGGESX reports <IMG
 WIDTH="19" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.png"
 ALT="$l_{\cal I}$">
and <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img5.png"
 ALT="$r_{\cal I}$">
in <TT>RCONDE(1)</TT>
and <TT>RCONDE(2)</TT> (<TT>PL</TT> and <TT>PR</TT> in xTGSEN)), respectively,
and estimates of 
<!-- MATH
 ${\rm Dif}_u({\cal I})$
 -->
<IMG
 WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img777.png"
 ALT="${\rm Dif}_u({\cal I})$">
and 
<!-- MATH
 ${\rm Dif}_l({\cal I})$
 -->
<IMG
 WIDTH="59" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img778.png"
 ALT="${\rm Dif}_l({\cal I})$">
in <TT>RCONDV(1)</TT>
and <TT>RCONDV(2)</TT> (<TT>DIF(1)</TT> and <TT>DIF(2)</TT> in xTGSEN), respectively.

<P>
As for the nonsymmetric eigenvalue problem we provide both asymptotic
and global error bounds.  The asymptotic approximate error bounds for
eigenvalues, averages of eigenvalues, eigenvectors, and deflating
subspaces provided in Table <A HREF="node102.html#asymp">4.7</A> are true only for
sufficiently small <IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img773.png"
 ALT="$\Vert(E, F)\Vert _F$">.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="asymp"></A>
<P>
<DIV ALIGN="CENTER">
<A NAME="12281"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.7:</STRONG>
Asymptotic error bounds for the generalized nonsymmetric eigenvalue
problem</CAPTION>
<TR><TD ALIGN="LEFT">Simple eigenvalue:</TD>
<TD ALIGN="CENTER">
<!-- MATH
 ${\cal X}(({\hat{\alpha}}_i,{\hat{\beta}}_i), ({\alpha}_i,{\beta}_i))
    \def \theguybelow{\sim}
\def \verticalposition{\lower 2.5pt}
\def \spacingwithinsymbol{\baselineskip0pt.2pt}
\mathrel{\mathpalette\verticalposition\vbox{\spacingwithinsymbol
\everycr={}\tabskip0pt
\halign{$;\hfil##\hfil$\crcr S\crcr
\theguybelow\crcr}}PMlt;}\|(E,F)\|_F/ s_i$
 -->
<IMG
 WIDTH="320" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img779.png"
 ALT="% latex2html id marker 16841
${\cal X}(({\hat{\alpha}}_i,{\hat{\beta}}_i), ({\al...
...n{$;\hfil ..."></TD>
</TR>
<TR><TD ALIGN="LEFT">Eigenvalue cluster:</TD>
<TD ALIGN="CENTER">
<!-- MATH
 ${\cal X}( ({\hat{\alpha}}_{\cal I},{\hat{\beta}}_{\cal I}),
             ({\alpha}_{\cal I},{\beta}_{\cal I}) )
    \def \theguybelow{\sim}
\def \verticalposition{\lower 2.5pt}
\def \spacingwithinsymbol{\baselineskip0pt.2pt}
\mathrel{\mathpalette\verticalposition\vbox{\spacingwithinsymbol
\everycr={}\tabskip0pt
\halign{$;\hfil##\hfil$\crcr S\crcr
\theguybelow\crcr}}PMlt;}\|(E,F)\|_F/ l_{\cal I}$
 -->
<IMG
 WIDTH="336" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img780.png"
 ALT="% latex2html id marker 16845
${\cal X}( ({\hat{\alpha}}_{\cal I},{\hat{\beta}}_{...
...fil ..."></TD>
</TR>
<TR><TD ALIGN="LEFT">Eigenvector pair:</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Left</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} (\hat{{\em y}}_i , {\em y}_i) \def \theguybelow{\sim}
\def \verticalposition{\lower 2.5pt}
\def \spacingwithinsymbol{\baselineskip0pt.2pt}
\mathrel{\mathpalette\verticalposition\vbox{\spacingwithinsymbol
\everycr={}\tabskip0pt
\halign{$;\hfil##\hfil$\crcr S\crcr
\theguybelow\crcr}}PMlt;}
{\|(E,F)\|_F}/{{\rm Dif}_l(i)}$
 -->
<IMG
 WIDTH="297" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img781.png"
 ALT="% latex2html id marker 16849
$\theta_{\max} (\hat{{\em y}}_i , {\em y}_i) \def \...
...il$\crcr S\crcr
\theguybelow\crcr}}PMlt;}
{\Vert(E,F)\Vert _F}/{{\rm Dif}_l(i)}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Right</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} (\hat{{\em x}}_i , {\em x}_i) \def \theguybelow{\sim}
\def \verticalposition{\lower 2.5pt}
\def \spacingwithinsymbol{\baselineskip0pt.2pt}
\mathrel{\mathpalette\verticalposition\vbox{\spacingwithinsymbol
\everycr={}\tabskip0pt
\halign{$;\hfil##\hfil$\crcr S\crcr
\theguybelow\crcr}}PMlt;}
{\|(E,F)\|_F}/{{\rm Dif}_l(i)}$
 -->
<IMG
 WIDTH="296" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img782.png"
 ALT="% latex2html id marker 16853
$\theta_{\max} (\hat{{\em x}}_i , {\em x}_i) \def \...
...il$\crcr S\crcr
\theguybelow\crcr}}PMlt;}
{\Vert(E,F)\Vert _F}/{{\rm Dif}_l(i)}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Deflating subspace pair:</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Left</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} ({\widehat{{\cal L}}}_{\cal I} , {\cal L}_{\cal I})
     \def \theguybelow{\sim}
\def \verticalposition{\lower 2.5pt}
\def \spacingwithinsymbol{\baselineskip0pt.2pt}
\mathrel{\mathpalette\verticalposition\vbox{\spacingwithinsymbol
\everycr={}\tabskip0pt
\halign{$;\hfil##\hfil$\crcr S\crcr
\theguybelow\crcr}}PMlt;}{\|(E,F)\|_F}/{{\rm Dif}_l({\cal I})}$
 -->
<IMG
 WIDTH="316" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img783.png"
 ALT="% latex2html id marker 16857
$\theta_{\max} ({\widehat{{\cal L}}}_{\cal I} , {\c...
...cr S\crcr
\theguybelow\crcr}}PMlt;}{\Vert(E,F)\Vert _F}/{{\rm Dif}_l({\cal I})}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Right</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} ({\widehat{{\cal R}}}_{\cal I} , {\cal R}_{\cal I})
     \def \theguybelow{\sim}
\def \verticalposition{\lower 2.5pt}
\def \spacingwithinsymbol{\baselineskip0pt.2pt}
\mathrel{\mathpalette\verticalposition\vbox{\spacingwithinsymbol
\everycr={}\tabskip0pt
\halign{$;\hfil##\hfil$\crcr S\crcr
\theguybelow\crcr}}PMlt;}{\|(E,F)\|_F}/{{\rm Dif}_l({\cal I})}$
 -->
<IMG
 WIDTH="321" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img784.png"
 ALT="% latex2html id marker 16861
$\theta_{\max} ({\widehat{{\cal R}}}_{\cal I} , {\c...
...cr S\crcr
\theguybelow\crcr}}PMlt;}{\Vert(E,F)\Vert _F}/{{\rm Dif}_l({\cal I})}$"></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<A NAME="12332"></A>
<A NAME="12333"></A>
<A NAME="12334"></A>
<A NAME="12335"></A>

<P>
If the problem is ill-conditioned, the asymptotic bounds
may only hold for extremely small values of <IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img773.png"
 ALT="$\Vert(E, F)\Vert _F$">.
Therefore, we also
provide similar global error bounds, which are valid for
all perturbations that satisfy an upper bound on <IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img773.png"
 ALT="$\Vert(E, F)\Vert _F$">.
The global error bounds in Table <A HREF="node102.html#global">4.8</A> are guaranteed to hold for all

<!-- MATH
 $\|(E,F)\|_F < {\Delta}$
 -->
<IMG
 WIDTH="120" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img785.png"
 ALT="$\Vert(E,F)\Vert _F &lt; {\Delta}$">,
where

<UL><LI>
<!-- MATH
 ${\Delta} \equiv \frac{1}{4} \min (l_i,r_i)
{\min({\rm Dif}_u(i), {\rm Dif}_l(i))}$
 -->
<IMG
 WIDTH="283" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img786.png"
 ALT="${\Delta} \equiv \frac{1}{4} \min (l_i,r_i)
{\min({\rm Dif}_u(i), {\rm Dif}_l(i))}$">
for an individual eigenvector pair, and

<LI>
<!-- MATH
 ${\Delta} \equiv \frac{1}{4} \min (l_{\cal I},r_{\cal I})
{\min({\rm Dif}_u({\cal I}), {\rm Dif}_l({\cal I}))}$
 -->
<IMG
 WIDTH="300" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img787.png"
 ALT="${\Delta} \equiv \frac{1}{4} \min (l_{\cal I},r_{\cal I})
{\min({\rm Dif}_u({\cal I}), {\rm Dif}_l({\cal I}))}$">
for a cluster of
eigenvalues or a deflating subspace pair.

</UL>

<P>
We let 
<!-- MATH
 $\delta \equiv \|(E,F)\|_F / {\Delta}$
 -->
<IMG
 WIDTH="137" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img788.png"
 ALT="$\delta \equiv \Vert(E,F)\Vert _F / {\Delta}$">
in Table <A HREF="node102.html#global">4.8</A>.
If <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img366.png"
 ALT="$\delta$">
is small, then the computed pair of left and right deflating
subspaces (or computed left and right eigenvectors) are small perturbations of
the exact pair of deflating subspaces (or the true left and right eigenvectors).
The error bounds conform with the corresponding bounds for the nonsymmetric
eigenproblem (see subsection&nbsp;<A HREF="node93.html#secnepsummary">4.8.1.1</A> ).

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="global"></A>
<DIV ALIGN="CENTER">
<A NAME="13304"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table:</STRONG>
 Global error bounds for the generalized nonsymmetric
eigenvalue problem assuming 
<!-- MATH
 $\delta \equiv \|(E,F)\|_F/{\Delta} < 1$
 -->
<IMG
 WIDTH="169" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img789.png"
 ALT="$\delta \equiv \Vert(E,F)\Vert _F/{\Delta} &lt; 1$">.</CAPTION>
<TR><TD ALIGN="LEFT">Eigenvalue cluster:</TD>
<TD ALIGN="CENTER">
<!-- MATH
 ${\cal X}( ({\hat{\alpha}}_{\cal I},{\hat{\beta}}_{\cal I}),
             ({\alpha}_{\cal I},{\beta}_{\cal I}) )
    \leq 2 \|(E,F)\|_F/ l_{\cal I}$
 -->
<IMG
 WIDTH="294" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img790.png"
 ALT="${\cal X}( ({\hat{\alpha}}_{\cal I},{\hat{\beta}}_{\cal I}),
({\alpha}_{\cal I},{\beta}_{\cal I}) )
\leq 2 \Vert(E,F)\Vert _F/ l_{\cal I}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Eigenvector pair:</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Left</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} (\hat{y}_i , y_i) \leq
\arctan \left(
{\delta \cdot l_i}/{(1 - \delta \sqrt{1 - l_i^2})}
\right)$
 -->
<IMG
 WIDTH="337" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
 SRC="img791.png"
 ALT="$\theta_{\max} (\hat{y}_i , y_i) \leq
\arctan \left(
{\delta \cdot l_i}/{(1 - \delta \sqrt{1 - l_i^2})}
\right)$"></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Right</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} (\hat{x}_i , x_i) \leq
\arctan \left(
{\delta \cdot r_i}/{(1 - \delta \sqrt{1 - r_i^2})}
\right)$
 -->
<IMG
 WIDTH="345" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
 SRC="img792.png"
 ALT="$\theta_{\max} (\hat{x}_i , x_i) \leq
\arctan \left(
{\delta \cdot r_i}/{(1 - \delta \sqrt{1 - r_i^2})}
\right)$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Deflating subspace pair:</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Left</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max} ({\widehat{{\cal L}}}_{\cal I},{\cal L}_{\cal I})\leq
\arctan \left(
{\delta \cdot l_{\cal I}}/{(1 - \delta \sqrt{1 - l_{\cal I}^2})}
\right)$
 -->
<IMG
 WIDTH="352" HEIGHT="48" ALIGN="MIDDLE" BORDER="0"
 SRC="img793.png"
 ALT="$\theta_{\max} ({\widehat{{\cal L}}}_{\cal I},{\cal L}_{\cal I})\leq
\arctan \left(
{\delta \cdot l_{\cal I}}/{(1 - \delta \sqrt{1 - l_{\cal I}^2})}
\right)$"></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;&nbsp; Right</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta_{\max}({\widehat{{\cal R}}}_{\cal I},{\cal R}_{\cal I})\leq
\arctan \left(
{\delta \cdot r_{\cal I}}/{(1 - \delta \sqrt{1 - r_{\cal I}^2 })}
\right)$
 -->
<IMG
 WIDTH="363" HEIGHT="48" ALIGN="MIDDLE" BORDER="0"
 SRC="img794.png"
 ALT="$\theta_{\max}({\widehat{{\cal R}}}_{\cal I},{\cal R}_{\cal I})\leq
\arctan \left(
{\delta \cdot r_{\cal I}}/{(1 - \delta \sqrt{1 - r_{\cal I}^2 })}
\right)$"></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
For ill-conditioned problems the restriction <IMG
 WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img795.png"
 ALT="$\Delta$">
on <IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img773.png"
 ALT="$\Vert(E, F)\Vert _F$">
may also be small.
Indeed, a small value of <IMG
 WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img795.png"
 ALT="$\Delta$">
shows that the cluster of
eigenvalues (in the (1,1)-blocks of <B>(<I>A</I>, <I>B</I>)</B>) is ill-conditioned in
the sense that small perturbations of <B>(<I>A</I>, <I>B</I>)</B> may imply that one eigenvalue in
the cluster moves and coalesces with another eigenvalue (outside the cluster).
Accordingly, this also means that the associated (left and right)
deflating subspaces are sensitive to small perturbations,
since the size of the
perturbed subspaces may change for small perturbations of <B>(<I>A</I>, <I>B</I>)</B>.
See also the discussion of singular problems in section&nbsp;<A HREF="node105.html#sec_singular">4.11.1.4</A>.

<P>
As for the nonsymmetric eigenvalue problem we have global error bounds for
eigenvalues which are true for all <B><I>E</I></B> and <B><I>F</I></B>.
Let <B>(<I>A</I>, <I>B</I>)</B> be a diagonalizable matrix pair. We let the columns of
<IMG
 WIDTH="18" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img796.png"
 ALT="$\widehat{Y}$">
and <IMG
 WIDTH="20" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img797.png"
 ALT="$\widehat{X}$">
be the computed left and right
eigenvectors associated with
the computed generalized eigenvalue pairs

<!-- MATH
 $({\hat{\alpha}}_i, {\hat{\beta}}_i), i = 1, \ldots, n$
 -->
<IMG
 WIDTH="152" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img798.png"
 ALT="$({\hat{\alpha}}_i, {\hat{\beta}}_i), i = 1, \ldots, n$">.
Moreover, we assume that <IMG
 WIDTH="18" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img796.png"
 ALT="$\widehat{Y}$">
and <IMG
 WIDTH="20" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img797.png"
 ALT="$\widehat{X}$">
are normalized such that 
<!-- MATH
 $|\hat{\alpha}_i|^2 + |\hat{\beta}_i|^2 = 1$
 -->
<IMG
 WIDTH="124" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img799.png"
 ALT="$\vert\hat{\alpha}_i\vert^2 + \vert\hat{\beta}_i\vert^2 = 1$">
and 
<!-- MATH
 $\|\hat{y}_i\|_2 = 1$
 -->
<IMG
 WIDTH="75" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img800.png"
 ALT="$\Vert\hat{y}_i\Vert _2 = 1$">,
i.e., we
overwrite <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img760.png"
 ALT="$\hat{y}_i$">
with  
<!-- MATH
 $\hat{y_i}/ \|\hat{y_i}\|_2$
 -->
<IMG
 WIDTH="66" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img801.png"
 ALT="$\hat{y_i}/ \Vert\hat{y_i}\Vert _2$">,

<!-- MATH
 $({\hat{\alpha}}_i,
{\hat{\beta}}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img727.png"
 ALT="$({\hat{\alpha}}_i, {\hat{\beta}}_i)$">
with  
<!-- MATH
 $({\hat{\alpha}}_i, {\hat{\beta}}_i) /
(|\hat{\alpha}_i|^2 + |\hat{\beta}_i|^2)^{1/2}$
 -->
<IMG
 WIDTH="188" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img802.png"
 ALT="$({\hat{\alpha}}_i, {\hat{\beta}}_i) /
(\vert\hat{\alpha}_i\vert^2 + \vert\hat{\beta}_i\vert^2)^{1/2}$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img356.png"
 ALT="$\hat{x}_i$">
with

<!-- MATH
 $\hat{x}_i \|\hat{y}_i\|_2 / (|\hat{\alpha}_i|^2 + |\hat{\beta}_i|^2)^{1/2}$
 -->
<IMG
 WIDTH="190" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img803.png"
 ALT="$\hat{x}_i \Vert\hat{y}_i\Vert _2 / (\vert\hat{\alpha}_i\vert^2 + \vert\hat{\beta}_i\vert^2)^{1/2}$">.
Then all eigenvalues 
<!-- MATH
 $({\alpha}_i, {\beta}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img725.png"
 ALT="$({\alpha}_i, {\beta}_i)$">
of <B>(<I>A</I>, <I>B</I>)</B> with

<!-- MATH
 $|{\alpha}_i|^2 + |{\beta}_i|^2 = 1$
 -->
<IMG
 WIDTH="124" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img804.png"
 ALT="$\vert{\alpha}_i\vert^2 + \vert{\beta}_i\vert^2 = 1$">
lie in the union of <B><I>n</I></B> regions
(``spheres'')
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
\left\{  (\alpha,\beta), |\alpha|^2 + |\beta|^2 = 1:
{\cal X}((\alpha,\beta), ({\hat{\alpha}}_i, {\hat{\beta}}_i))
\leq n \|(E,F)\|_2/ s_i \right\}.
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq411.29a"></A><IMG
 WIDTH="465" HEIGHT="37" BORDER="0"
 SRC="img805.png"
 ALT="\begin{displaymath}
\left\{ (\alpha,\beta), \vert\alpha\vert^2 + \vert\beta\vert...
..._i, {\hat{\beta}}_i))
\leq n \Vert(E,F)\Vert _2/ s_i \right\}.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.10)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
If <B><I>k</I></B> of the regions overlap, so that any two points inside the <B><I>k</I></B>
``spheres''
can be connected by a continuous curve lying entirely inside the <B><I>k</I></B> regions,
and if no larger set of <B><I>k</I> + 1</B> regions has this property,
then exactly <B><I>k</I></B> of the
eigenvalues  
<!-- MATH
 $({\alpha}_i, {\beta}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img725.png"
 ALT="$({\alpha}_i, {\beta}_i)$">
lie inside the union of these
``spheres''.
In other words, the global error bound with respect to an individual eigenvalue

<!-- MATH
 $({\alpha}_i,{\beta}_i)$
 -->
<IMG
 WIDTH="58" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img725.png"
 ALT="$({\alpha}_i, {\beta}_i)$">
is only useful if it defines a region
that does not intersect with regions corresponding to other eigenvalues.
If two or more regions intersect,
then we can only say that a (true) eigenvalue of <B>(<I>A</I>, <I>B</I>)</B> lies in
the union of the overlapping regions. If <IMG
 WIDTH="78" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img806.png"
 ALT="$\Vert(E,F)\Vert _2$">
is so large
that <B>(<I>A</I>+<I>E</I>,<I>B</I>+<I>F</I>)</B> could be singular, which means that the eigenvalues
are not well-determined by the data, then the error bound from
(<A HREF="node102.html#eq411.29a">4.10</A>) will be so large as to not limit the eigenvalues at all;
see section&nbsp;<A HREF="node105.html#sec_singular">4.11.1.4</A> for details.

<P>
<B>Notation Conversion</B> For easy of reference,
the following table summarizes the notation used in mathematical
expression of the error bounds in tables <A HREF="node102.html#asymp">4.7</A> and <A HREF="node102.html#global">4.8</A>
and in the corresponding driver and computational routines.

<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="LEFT">Mathematical</TD>
<TD ALIGN="CENTER" COLSPAN=2>Driver Routines</TD>
<TD ALIGN="CENTER" COLSPAN=2>Computational Routines</TD>
</TR>
<TR><TD ALIGN="LEFT">notation</TD>
<TD ALIGN="CENTER">name</TD>
<TD ALIGN="LEFT">parameter</TD>
<TD ALIGN="CENTER">name</TD>
<TD ALIGN="LEFT">parameter</TD>
</TR>
<TR><TD ALIGN="LEFT"><B><I>s</I><SUB><I>i</I></SUB></B></TD>
<TD ALIGN="CENTER">xGGEVX</TD>
<TD ALIGN="LEFT"><TT> RCONDE(i)</TT></TD>
<TD ALIGN="CENTER">xTGSNA</TD>
<TD ALIGN="LEFT"><TT> S(i)</TT>&nbsp;&nbsp;&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">
<!-- MATH
 $\mbox{Dif}_l(i)$
 -->
<IMG
 WIDTH="53" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img807.png"
 ALT="$\mbox{Dif}_l(i)$"></TD>
<TD ALIGN="CENTER">xGGEVX</TD>
<TD ALIGN="LEFT"><TT> RCONDV(i)</TT></TD>
<TD ALIGN="CENTER">xTGSNA</TD>
<TD ALIGN="LEFT"><TT> DIF(i)</TT></TD>
</TR>
<TR><TD ALIGN="LEFT"><IMG
 WIDTH="19" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.png"
 ALT="$l_{\cal I}$"></TD>
<TD ALIGN="CENTER">xGGESX</TD>
<TD ALIGN="LEFT"><TT> RCONDE(1)</TT></TD>
<TD ALIGN="CENTER">xTGSEN</TD>
<TD ALIGN="LEFT"><TT> PL</TT></TD>
</TR>
<TR><TD ALIGN="LEFT"><IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img5.png"
 ALT="$r_{\cal I}$"></TD>
<TD ALIGN="CENTER">xGGESX</TD>
<TD ALIGN="LEFT"><TT> RCONDE(2)</TT></TD>
<TD ALIGN="CENTER">xTGSEN</TD>
<TD ALIGN="LEFT"><TT> PR</TT></TD>
</TR>
<TR><TD ALIGN="LEFT">
<!-- MATH
 $\mbox{Dif}_u({\cal I})$
 -->
<IMG
 WIDTH="61" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img808.png"
 ALT="$\mbox{Dif}_u({\cal I})$"></TD>
<TD ALIGN="CENTER">xGGESX</TD>
<TD ALIGN="LEFT"><TT> RCONDV(1)</TT></TD>
<TD ALIGN="CENTER">xTGSEN</TD>
<TD ALIGN="LEFT"><TT> DIF(1)</TT></TD>
</TR>
<TR><TD ALIGN="LEFT">
<!-- MATH
 $\mbox{Dif}_l({\cal I})$
 -->
<IMG
 WIDTH="57" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img809.png"
 ALT="$\mbox{Dif}_l({\cal I})$"></TD>
<TD ALIGN="CENTER">xGGESX</TD>
<TD ALIGN="LEFT"><TT> RCONDV(2)</TT></TD>
<TD ALIGN="CENTER">xTGSEN</TD>
<TD ALIGN="LEFT"><TT> DIF(2)</TT></TD>
</TR>
</TABLE>
</DIV>

<P>
The quantities <B><I>l</I><SUB><I>i</I></SUB></B>, <B><I>r</I><SUB><I>i</I></SUB></B>, 
<!-- MATH
 $\mbox{Dif}_u(i)$
 -->
<IMG
 WIDTH="56" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img810.png"
 ALT="$\mbox{Dif}_u(i)$">
and 
<!-- MATH
 $\mbox{Dif}_l(i)$
 -->
<IMG
 WIDTH="53" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img807.png"
 ALT="$\mbox{Dif}_l(i)$">
used in
Table <A HREF="node102.html#global">4.8</A> (for the global error bounds of
the <IMG
 WIDTH="28" HEIGHT="23" ALIGN="BOTTOM" BORDER="0"
 SRC="img811.png"
 ALT="$i^{\mbox{th}}$">
computed eigenvalue pair 
<!-- MATH
 $(\hat{\alpha},\hat{\beta})$
 -->
<IMG
 WIDTH="48" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img812.png"
 ALT="$(\hat{\alpha},\hat{\beta})$">
and the left and right eigenvectors <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img760.png"
 ALT="$\hat{y}_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img356.png"
 ALT="$\hat{x}_i$">)
can be obtained by calling xTGSEN with 
<!-- MATH
 ${\cal I} = \{ i \}$
 -->
<IMG
 WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img813.png"
 ALT="${\cal I} = \{ i \}$">.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5626"
 HREF="node103.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5620"
 HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5614"
 HREF="node101.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5622"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5624"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5627"
 HREF="node103.html">Balancing and Conditioning</A>
<B> Up:</B> <A NAME="tex2html5621"
 HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5615"
 HREF="node101.html">Further Details: Error Bounds</A>
 &nbsp <B>  <A NAME="tex2html5623"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5625"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>