File: node103.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (333 lines) | stat: -rw-r--r-- 11,197 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Balancing and Conditioning</TITLE>
<META NAME="description" CONTENT="Balancing and Conditioning">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node104.html">
<LINK REL="previous" HREF="node102.html">
<LINK REL="up" HREF="node101.html">
<LINK REL="next" HREF="node104.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5640"
 HREF="node104.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5634"
 HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5628"
 HREF="node102.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5636"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5638"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5641"
 HREF="node104.html">Computing s<SUB>i</SUB>, , and</A>
<B> Up:</B> <A NAME="tex2html5635"
 HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5629"
 HREF="node102.html">Overview</A>
 &nbsp <B>  <A NAME="tex2html5637"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5639"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION034111200000000000000"></A><A NAME="GENP32"></A>
<BR>
Balancing and Conditioning
</H3>

<P>
As in the standard nonsymmetric eigenvalue problem (section <A HREF="node94.html#secbalance">4.8.1.2</A>),
two preprocessing steps<A NAME="12491"></A>
may be performed on the input matrix pair <B>(<I>A</I>, <I>B</I>)</B>.
The first one is a <B>permutation</B>, reordering the rows and columns
to attempt to make <B><I>A</I></B> and <B><I>B</I></B> block upper triangular, and
therefore to reduce the order of the eigenvalue problems to be solved:
we let 
<!-- MATH
 $(A',B') = P_1 (A, B) P_2$
 -->
<B>(<I>A</I>',<I>B</I>') = <I>P</I><SUB>1</SUB> (<I>A</I>, <I>B</I>) <I>P</I><SUB>2</SUB></B>, where <B><I>P</I><SUB>1</SUB></B> and <B><I>P</I><SUB>2</SUB></B> are
permutation matrices.
The second one is a <B>scaling</B><A NAME="12494"></A>
by two-sided diagonal transformation <B><I>D</I><SUB>1</SUB></B>
and <B><I>D</I><SUB>2</SUB></B> to make the elements of 
<!-- MATH
 $A''= D_1 A' D_2$
 -->
<B><I>A</I>''= <I>D</I><SUB>1</SUB> <I>A</I>' <I>D</I><SUB>2</SUB></B> and 
<!-- MATH
 $B'' = D_1 B' D_2$
 -->
<B><I>B</I>'' = <I>D</I><SUB>1</SUB> <I>B</I>' <I>D</I><SUB>2</SUB></B>
have magnitudes as close to unity as possible, so as to reduce the effect
of the roundoff error made by the later algorithm [<A
 HREF="node151.html#ward81">100</A>].
We refer to these two operations as <EM>balancing</EM>.

<P>
Balancing is performed by driver xGGEVX, which calls computational
routine xGGBAL. The user may choose to optionally
permute, scale, do both or do either;
<A NAME="12497"></A><A NAME="12498"></A><A NAME="12499"></A><A NAME="12500"></A>
this is specified by the input parameter
<TT>BALANC</TT><A NAME="12502"></A> when xGGEVX is called.
Permuting has no effect on the condition numbers<A NAME="12503"></A>
or their interpretation as described in the previous subsections. Scaling does,
however, change their interpretation, as we now describe.

<P>
The output parameters of xGGEVX -
<TT>ILO</TT>(integer), <TT>IHI</TT>(integer),
<TT>LSCALE</TT>(real array of length N),
<TT>RSCALE</TT>(real array of length N),
<TT>ABNRM</TT>(real) and
<TT>BBNRM</TT>(real) -
<A NAME="12510"></A>
<A NAME="12511"></A>
<A NAME="12512"></A>
<A NAME="12513"></A>
<A NAME="12514"></A>
describe the result of balancing the matrix pair <B>(<I>A</I>, <I>B</I>)</B> to
<B>(<I>A</I>'',<I>B</I>'')</B>, where N is the dimension of <B>(<I>A</I>,<I>B</I>)</B>.
The matrix pair <B>(<I>A</I>'',<I>B</I>'')</B> has block upper triangular
structure, with at most three blocks: from 1 to <TT>ILO</TT>-1,
from <TT>ILO</TT> to <TT>IHI</TT>, and from <TT>IHI</TT>+1 to N (see section
<A HREF="node55.html#sec_gnep_comp">2.4.8</A>). The first and last blocks are upper
triangular, and so already in generalized Schur form. These blocks are not
scaled; only the block from <TT>ILO</TT> to <TT>IHI</TT> is scaled.
Details of the left permutations (<B><I>P</I><SUB>1</SUB></B>) and scaling (<B><I>D</I><SUB>1</SUB></B>)
and the right permutations (<B><I>P</I><SUB>2</SUB></B>) and scaling (<B><I>D</I><SUB>2</SUB></B>)
are described in <TT>LSCALE</TT> and <TT>RSCALE</TT>, respectively.
(See the specification of xGGEVX or xGGBAL for more information).
The one-norms of <B><I>A</I>''</B> and <B><I>B</I>''</B> are returned in
<TT>ABNRM</TT> and <TT>BBNRM</TT>, respectively.

<P>
The condition numbers
<A NAME="12526"></A>
described in earlier subsections are computed
for the balanced matrix pair <B>(<I>A</I>'',<I>B</I>'')</B> in xGGEVX,  and so
some interpretation is needed to apply them to the eigenvalues
and eigenvectors of the original matrix pair <B>(<I>A</I>, <I>B</I>)</B>.
To use the bounds for eigenvalues in Tables <A HREF="node102.html#asymp">4.7</A> and <A HREF="node102.html#global">4.8</A>,
we must replace <IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img773.png"
 ALT="$\Vert(E, F)\Vert _F$">
by

<!-- MATH
 $O(\epsilon)\|(A'',B'')\|_F =
O(\epsilon)\sqrt{ {\tt ABNRM}^2 + {\tt BBNRM}^2 }$
 -->
<IMG
 WIDTH="332" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
 SRC="img814.png"
 ALT="$O(\epsilon)\Vert(A'',B'')\Vert _F =
O(\epsilon)\sqrt{ {\tt ABNRM}^2 + {\tt BBNRM}^2 }$">.
To use the bounds for eigenvectors, we also need to take
into account that bounds on rotation of the right and left eigenvectors
are for the right and left eigenvectors <B><I>x</I>''</B> and <B><I>y</I>''</B> of
<B><I>A</I>''</B> and <B><I>B</I>''</B>, respectively, which are related to
the right and left eigenvectors <B><I>x</I></B> and <B><I>y</I></B> by

<!-- MATH
 $x'' = D^{-1}_2 P^T_2 x$
 -->
<B><I>x</I>'' = <I>D</I><SUP>-1</SUP><SUB>2</SUB> <I>P</I><SUP><I>T</I></SUP><SUB>2</SUB> <I>x</I></B> and 
<!-- MATH
 $y'' = D^{-1}_1 P_1 y$
 -->
<B><I>y</I>'' = <I>D</I><SUP>-1</SUP><SUB>1</SUB> <I>P</I><SUB>1</SUB> <I>y</I></B>,
or 
<!-- MATH
 $x = P_2 D_2 x''$
 -->
<B><I>x</I> = <I>P</I><SUB>2</SUB> <I>D</I><SUB>2</SUB> <I>x</I>''</B> and 
<!-- MATH
 $y = P^T_1 D_1 x''$
 -->
<B><I>y</I> = <I>P</I><SUP><I>T</I></SUP><SUB>1</SUB> <I>D</I><SUB>1</SUB> <I>x</I>''</B> respectively.
Let <IMG
 WIDTH="21" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img613.png"
 ALT="$\theta''$">
be the bound on the rotation of <B><I>x</I>''</B>
from Table <A HREF="node102.html#asymp">4.7</A> and Table <A HREF="node102.html#global">4.8</A> and
let <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img328.png"
 ALT="$\theta$">
be the desired bound on the rotation of <B><I>x</I></B>. Let
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\kappa(D_2)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt RSCALE}(i) }
                 { \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt RSCALE}(i) }
\end{displaymath}
 -->


<IMG
 WIDTH="247" HEIGHT="48" BORDER="0"
 SRC="img815.png"
 ALT="\begin{displaymath}
\kappa(D_2)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } ...
...
{ \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt RSCALE}(i) }
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
be the condition number of the right scaling <B><I>D</I><SUB>2</SUB></B> with respect
to matrix inversion. Then
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\sin \theta \leq \kappa(D_2) \sin\theta''.
\end{displaymath}
 -->


<IMG
 WIDTH="150" HEIGHT="31" BORDER="0"
 SRC="img816.png"
 ALT="\begin{displaymath}
\sin \theta \leq \kappa(D_2) \sin\theta''.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Similarly, for the bound of the angles <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img817.png"
 ALT="$\phi$">
and <IMG
 WIDTH="23" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img818.png"
 ALT="$\phi''$">
of the
left eigenvectors <B><I>y</I>''</B> and <B><I>y</I></B>, we have
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\sin \phi \leq \kappa(D_1) \sin \phi'',
\end{displaymath}
 -->


<IMG
 WIDTH="153" HEIGHT="31" BORDER="0"
 SRC="img819.png"
 ALT="\begin{displaymath}
\sin \phi \leq \kappa(D_1) \sin \phi'',
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
 WIDTH="50" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img820.png"
 ALT="$\kappa(D_1)$">
is the condition number of the left
scaling <B><I>D</I><SUB>1</SUB></B> with respect to inversion,
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\kappa(D_1)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt LSCALE}(i) }
                 { \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt LSCALE}(i) }.
\end{displaymath}
 -->


<IMG
 WIDTH="254" HEIGHT="48" BORDER="0"
 SRC="img821.png"
 ALT="\begin{displaymath}
\kappa(D_1)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } ...
... { \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt LSCALE}(i) }.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<A NAME="12547"></A>
<A NAME="12548"></A>

<P>
The numerical example in section&nbsp;<A HREF="node100.html#sec_GNEPErrorBounds">4.11</A>
does no scaling, just permutation.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5640"
 HREF="node104.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5634"
 HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5628"
 HREF="node102.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5636"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5638"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5641"
 HREF="node104.html">Computing s<SUB>i</SUB>, , and</A>
<B> Up:</B> <A NAME="tex2html5635"
 HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5629"
 HREF="node102.html">Overview</A>
 &nbsp <B>  <A NAME="tex2html5637"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5639"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>