1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Balancing and Conditioning</TITLE>
<META NAME="description" CONTENT="Balancing and Conditioning">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node104.html">
<LINK REL="previous" HREF="node102.html">
<LINK REL="up" HREF="node101.html">
<LINK REL="next" HREF="node104.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5640"
HREF="node104.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5634"
HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5628"
HREF="node102.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5636"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5638"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5641"
HREF="node104.html">Computing s<SUB>i</SUB>, , and</A>
<B> Up:</B> <A NAME="tex2html5635"
HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5629"
HREF="node102.html">Overview</A>
  <B> <A NAME="tex2html5637"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5639"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION034111200000000000000"></A><A NAME="GENP32"></A>
<BR>
Balancing and Conditioning
</H3>
<P>
As in the standard nonsymmetric eigenvalue problem (section <A HREF="node94.html#secbalance">4.8.1.2</A>),
two preprocessing steps<A NAME="12491"></A>
may be performed on the input matrix pair <B>(<I>A</I>, <I>B</I>)</B>.
The first one is a <B>permutation</B>, reordering the rows and columns
to attempt to make <B><I>A</I></B> and <B><I>B</I></B> block upper triangular, and
therefore to reduce the order of the eigenvalue problems to be solved:
we let
<!-- MATH
$(A',B') = P_1 (A, B) P_2$
-->
<B>(<I>A</I>',<I>B</I>') = <I>P</I><SUB>1</SUB> (<I>A</I>, <I>B</I>) <I>P</I><SUB>2</SUB></B>, where <B><I>P</I><SUB>1</SUB></B> and <B><I>P</I><SUB>2</SUB></B> are
permutation matrices.
The second one is a <B>scaling</B><A NAME="12494"></A>
by two-sided diagonal transformation <B><I>D</I><SUB>1</SUB></B>
and <B><I>D</I><SUB>2</SUB></B> to make the elements of
<!-- MATH
$A''= D_1 A' D_2$
-->
<B><I>A</I>''= <I>D</I><SUB>1</SUB> <I>A</I>' <I>D</I><SUB>2</SUB></B> and
<!-- MATH
$B'' = D_1 B' D_2$
-->
<B><I>B</I>'' = <I>D</I><SUB>1</SUB> <I>B</I>' <I>D</I><SUB>2</SUB></B>
have magnitudes as close to unity as possible, so as to reduce the effect
of the roundoff error made by the later algorithm [<A
HREF="node151.html#ward81">100</A>].
We refer to these two operations as <EM>balancing</EM>.
<P>
Balancing is performed by driver xGGEVX, which calls computational
routine xGGBAL. The user may choose to optionally
permute, scale, do both or do either;
<A NAME="12497"></A><A NAME="12498"></A><A NAME="12499"></A><A NAME="12500"></A>
this is specified by the input parameter
<TT>BALANC</TT><A NAME="12502"></A> when xGGEVX is called.
Permuting has no effect on the condition numbers<A NAME="12503"></A>
or their interpretation as described in the previous subsections. Scaling does,
however, change their interpretation, as we now describe.
<P>
The output parameters of xGGEVX -
<TT>ILO</TT>(integer), <TT>IHI</TT>(integer),
<TT>LSCALE</TT>(real array of length N),
<TT>RSCALE</TT>(real array of length N),
<TT>ABNRM</TT>(real) and
<TT>BBNRM</TT>(real) -
<A NAME="12510"></A>
<A NAME="12511"></A>
<A NAME="12512"></A>
<A NAME="12513"></A>
<A NAME="12514"></A>
describe the result of balancing the matrix pair <B>(<I>A</I>, <I>B</I>)</B> to
<B>(<I>A</I>'',<I>B</I>'')</B>, where N is the dimension of <B>(<I>A</I>,<I>B</I>)</B>.
The matrix pair <B>(<I>A</I>'',<I>B</I>'')</B> has block upper triangular
structure, with at most three blocks: from 1 to <TT>ILO</TT>-1,
from <TT>ILO</TT> to <TT>IHI</TT>, and from <TT>IHI</TT>+1 to N (see section
<A HREF="node55.html#sec_gnep_comp">2.4.8</A>). The first and last blocks are upper
triangular, and so already in generalized Schur form. These blocks are not
scaled; only the block from <TT>ILO</TT> to <TT>IHI</TT> is scaled.
Details of the left permutations (<B><I>P</I><SUB>1</SUB></B>) and scaling (<B><I>D</I><SUB>1</SUB></B>)
and the right permutations (<B><I>P</I><SUB>2</SUB></B>) and scaling (<B><I>D</I><SUB>2</SUB></B>)
are described in <TT>LSCALE</TT> and <TT>RSCALE</TT>, respectively.
(See the specification of xGGEVX or xGGBAL for more information).
The one-norms of <B><I>A</I>''</B> and <B><I>B</I>''</B> are returned in
<TT>ABNRM</TT> and <TT>BBNRM</TT>, respectively.
<P>
The condition numbers
<A NAME="12526"></A>
described in earlier subsections are computed
for the balanced matrix pair <B>(<I>A</I>'',<I>B</I>'')</B> in xGGEVX, and so
some interpretation is needed to apply them to the eigenvalues
and eigenvectors of the original matrix pair <B>(<I>A</I>, <I>B</I>)</B>.
To use the bounds for eigenvalues in Tables <A HREF="node102.html#asymp">4.7</A> and <A HREF="node102.html#global">4.8</A>,
we must replace <IMG
WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img773.png"
ALT="$\Vert(E, F)\Vert _F$">
by
<!-- MATH
$O(\epsilon)\|(A'',B'')\|_F =
O(\epsilon)\sqrt{ {\tt ABNRM}^2 + {\tt BBNRM}^2 }$
-->
<IMG
WIDTH="332" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
SRC="img814.png"
ALT="$O(\epsilon)\Vert(A'',B'')\Vert _F =
O(\epsilon)\sqrt{ {\tt ABNRM}^2 + {\tt BBNRM}^2 }$">.
To use the bounds for eigenvectors, we also need to take
into account that bounds on rotation of the right and left eigenvectors
are for the right and left eigenvectors <B><I>x</I>''</B> and <B><I>y</I>''</B> of
<B><I>A</I>''</B> and <B><I>B</I>''</B>, respectively, which are related to
the right and left eigenvectors <B><I>x</I></B> and <B><I>y</I></B> by
<!-- MATH
$x'' = D^{-1}_2 P^T_2 x$
-->
<B><I>x</I>'' = <I>D</I><SUP>-1</SUP><SUB>2</SUB> <I>P</I><SUP><I>T</I></SUP><SUB>2</SUB> <I>x</I></B> and
<!-- MATH
$y'' = D^{-1}_1 P_1 y$
-->
<B><I>y</I>'' = <I>D</I><SUP>-1</SUP><SUB>1</SUB> <I>P</I><SUB>1</SUB> <I>y</I></B>,
or
<!-- MATH
$x = P_2 D_2 x''$
-->
<B><I>x</I> = <I>P</I><SUB>2</SUB> <I>D</I><SUB>2</SUB> <I>x</I>''</B> and
<!-- MATH
$y = P^T_1 D_1 x''$
-->
<B><I>y</I> = <I>P</I><SUP><I>T</I></SUP><SUB>1</SUB> <I>D</I><SUB>1</SUB> <I>x</I>''</B> respectively.
Let <IMG
WIDTH="21" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img613.png"
ALT="$\theta''$">
be the bound on the rotation of <B><I>x</I>''</B>
from Table <A HREF="node102.html#asymp">4.7</A> and Table <A HREF="node102.html#global">4.8</A> and
let <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img328.png"
ALT="$\theta$">
be the desired bound on the rotation of <B><I>x</I></B>. Let
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\kappa(D_2)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt RSCALE}(i) }
{ \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt RSCALE}(i) }
\end{displaymath}
-->
<IMG
WIDTH="247" HEIGHT="48" BORDER="0"
SRC="img815.png"
ALT="\begin{displaymath}
\kappa(D_2)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } ...
...
{ \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt RSCALE}(i) }
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
be the condition number of the right scaling <B><I>D</I><SUB>2</SUB></B> with respect
to matrix inversion. Then
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\sin \theta \leq \kappa(D_2) \sin\theta''.
\end{displaymath}
-->
<IMG
WIDTH="150" HEIGHT="31" BORDER="0"
SRC="img816.png"
ALT="\begin{displaymath}
\sin \theta \leq \kappa(D_2) \sin\theta''.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Similarly, for the bound of the angles <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img817.png"
ALT="$\phi$">
and <IMG
WIDTH="23" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img818.png"
ALT="$\phi''$">
of the
left eigenvectors <B><I>y</I>''</B> and <B><I>y</I></B>, we have
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\sin \phi \leq \kappa(D_1) \sin \phi'',
\end{displaymath}
-->
<IMG
WIDTH="153" HEIGHT="31" BORDER="0"
SRC="img819.png"
ALT="\begin{displaymath}
\sin \phi \leq \kappa(D_1) \sin \phi'',
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="50" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img820.png"
ALT="$\kappa(D_1)$">
is the condition number of the left
scaling <B><I>D</I><SUB>1</SUB></B> with respect to inversion,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\kappa(D_1)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt LSCALE}(i) }
{ \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt LSCALE}(i) }.
\end{displaymath}
-->
<IMG
WIDTH="254" HEIGHT="48" BORDER="0"
SRC="img821.png"
ALT="\begin{displaymath}
\kappa(D_1)=\frac{ \max_{ {\tt ILO} \leq i \leq {\tt IHI} } ...
... { \min_{ {\tt ILO} \leq i \leq {\tt IHI} } {\tt LSCALE}(i) }.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<A NAME="12547"></A>
<A NAME="12548"></A>
<P>
The numerical example in section <A HREF="node100.html#sec_GNEPErrorBounds">4.11</A>
does no scaling, just permutation.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5640"
HREF="node104.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5634"
HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5628"
HREF="node102.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5636"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5638"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5641"
HREF="node104.html">Computing s<SUB>i</SUB>, , and</A>
<B> Up:</B> <A NAME="tex2html5635"
HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5629"
HREF="node102.html">Overview</A>
  <B> <A NAME="tex2html5637"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5639"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|