1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Singular Eigenproblems</TITLE>
<META NAME="description" CONTENT="Singular Eigenproblems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node104.html">
<LINK REL="up" HREF="node101.html">
<LINK REL="next" HREF="node106.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5666"
HREF="node106.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5660"
HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5656"
HREF="node104.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5662"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5664"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5667"
HREF="node106.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5661"
HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5657"
HREF="node104.html">Computing s<SUB>i</SUB>, , and</A>
  <B> <A NAME="tex2html5663"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5665"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION034111400000000000000"></A><A NAME="sec_singular"></A>
<BR>
Singular Eigenproblems
</H3>
<P>
In this section, we give a brief discussion of singular
matrix pairs <B>(<I>A</I>,<I>B</I>)</B><A NAME="12856"></A>.
<P>
If the determinant of <IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$A - \lambda B$">
is zero for all values of <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
(or the determinant of
<!-- MATH
$\beta A - \alpha B$
-->
<IMG
WIDTH="75" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img851.png"
ALT="$\beta A - \alpha B$">
is zero for all
<!-- MATH
$(\alpha,\beta)$
-->
<IMG
WIDTH="48" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img181.png"
ALT="$(\alpha,\beta)$">),
the pair <B>(<I>A</I>,<I>B</I>)</B> is said to be <B>singular</B>.
The eigenvalue problem of a singular pair is much more complicated
than for a regular pair.
<P>
Consider for example the singular pair
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{cc}
1 & 0 \\0 & 0 \\
\end{array} \right), \quad\quad
B = \left( \begin{array}{cc}
1 & 0 \\0 & 0 \\
\end{array} \right),
\end{displaymath}
-->
<IMG
WIDTH="275" HEIGHT="54" BORDER="0"
SRC="img852.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{cc}
1 & 0 \\ 0 & 0 \\
\end{array...
...t( \begin{array}{cc}
1 & 0 \\ 0 & 0 \\
\end{array} \right),
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
which has one finite eigenvalue 1 and one indeterminate eigenvalue 0/0.
To see that neither eigenvalue is well determined by the data,
consider the slightly different problem
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A' = \left( \begin{array}{cc}
1 & \epsilon_1 \\\epsilon_2 & 0 \\
\end{array} \right), \quad\quad
B' = \left( \begin{array}{cc}
1 & \epsilon_3 \\\epsilon_4 & 0 \\
\end{array} \right),
\end{displaymath}
-->
<IMG
WIDTH="308" HEIGHT="54" BORDER="0"
SRC="img853.png"
ALT="\begin{displaymath}
A' = \left( \begin{array}{cc}
1 & \epsilon_1 \\ \epsilon_2 ...
...c}
1 & \epsilon_3 \\ \epsilon_4 & 0 \\
\end{array} \right),
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where the <IMG
WIDTH="17" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img854.png"
ALT="$\epsilon_i$">
are tiny nonzero numbers. Then it is easy to see
that <B>(<I>A</I>',<I>B</I>')</B> is regular with eigenvalues
<!-- MATH
$\epsilon_1 / \epsilon_3$
-->
<IMG
WIDTH="42" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img855.png"
ALT="$\epsilon_1 / \epsilon_3$">
and
<!-- MATH
$\epsilon_2 / \epsilon_4$
-->
<IMG
WIDTH="42" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img856.png"
ALT="$\epsilon_2 / \epsilon_4$">.
Given <EM>any</EM> two complex numbers <IMG
WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img857.png"
ALT="$\lambda_1$">
and
<IMG
WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img858.png"
ALT="$\lambda_2$">,
we can find arbitrarily tiny <IMG
WIDTH="17" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img854.png"
ALT="$\epsilon_i$">
such that
<!-- MATH
$\lambda_1 = \epsilon_1 / \epsilon_3$
-->
<IMG
WIDTH="83" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img859.png"
ALT="$\lambda_1 = \epsilon_1 / \epsilon_3$">
and
<!-- MATH
$\lambda_2 = \epsilon_2 / \epsilon_4$
-->
<IMG
WIDTH="83" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img860.png"
ALT="$\lambda_2 = \epsilon_2 / \epsilon_4$">
are the eigenvalues of <B>(<I>A</I>',<I>B</I>')</B>.
Since, in principle, roundoff could change <B>(<I>A</I>,<I>B</I>)</B> to <B>(<I>A</I>',<I>B</I>')</B>, we
cannot hope to compute accurate or even meaningful eigenvalues of
singular problems, without further information.
<P>
<P>
It is possible for a pair <B>(<I>A</I>,<I>B</I>)</B> in Schur form to be very close to singular,
and so have very sensitive eigenvalues, even if no diagonal entries of
<B><I>A</I></B> or <B><I>B</I></B> are small.
It suffices, for example, for <B><I>A</I></B> and <B><I>B</I></B> to nearly have a common null space
(though this condition is not necessary).
For example, consider the 16-by-16 matrices
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A'' = \left( \begin{array}{ccccc}
0.1 & 1 & & & \\
& 0.1 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0.1 & 1 \\
& & & & 0.1 \\
\end{array} \right) \quad\quad
\mbox{and} \quad\quad B'' = A''.
\end{displaymath}
-->
<IMG
WIDTH="432" HEIGHT="124" BORDER="0"
SRC="img861.png"
ALT="\begin{displaymath}
A'' = \left( \begin{array}{ccccc}
0.1 & 1 & & & \\
& 0.1 ...
...end{array} \right) \quad\quad
\mbox{and} \quad\quad B'' = A''.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Changing the <B>(<I>n</I>,1)</B> entries of <B><I>A</I>''</B> and <B><I>B</I>''</B> to <B>10<SUP>-16</SUP></B>, respectively,
makes both <B><I>A</I></B> and <B><I>B</I></B> singular, with a common null vector.
Then, using a technique analogous to the one applied to <B>(<I>A</I>,<I>B</I>)</B> above,
we can show that there is a
perturbation of <B><I>A</I>''</B> and <B><I>B</I>''</B> of norm
<!-- MATH
$10^{-16} + \epsilon$
-->
<IMG
WIDTH="75" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img862.png"
ALT="$10^{-16} + \epsilon$">,
for <EM>any</EM> <IMG
WIDTH="44" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img863.png"
ALT="$\epsilon>0$">,
that makes the 16 perturbed eigenvalues
have <EM>any</EM> arbitrary 16 complex values.
<P>
A complete understanding of the structure of a singular eigenproblem
<B>(<I>A</I>,<I>B</I>)</B> requires a study of its <EM>Kronecker canonical form</EM>,
a generalization of the <EM>Jordan canonical form</EM>.
In addition to Jordan blocks for finite and infinite eigenvalues,
the Kronecker form can contain ``singular blocks'', which occur only
if
<!-- MATH
${\rm det}(A- \lambda B) \equiv 0$
-->
<IMG
WIDTH="133" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img864.png"
ALT="${\rm det}(A- \lambda B) \equiv 0$">
for all <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
(or if <B><I>A</I></B> and <B><I>B</I></B>
are nonsquare).
See [<A
HREF="node151.html#gantmacher">53</A>,<A
HREF="node151.html#stewart72">93</A>,<A
HREF="node151.html#wilkinson79">105</A>,<A
HREF="node151.html#vandooren79">97</A>,<A
HREF="node151.html#demmelkagstrom87">29</A>] for
more details. Other numerical software, called GUPTRI<A NAME="12891"></A>,
is available for
computing a generalization of the
Schur canonical form for singular eigenproblems
[<A
HREF="node151.html#demmelkagstrom93a">30</A>,<A
HREF="node151.html#demmelkagstrom93b">31</A>].
<P>
The error bounds discussed in this guide hold for regular pairs only
(they become unbounded, or otherwise provide no information, when
<B>(<I>A</I>,<I>B</I>)</B> is close to singular). If a (nearly) singular pencil is reported
by the software discussed in this guide, then a further study of the matrix
pencil should be conducted, in order to determine whether meaningful results
have been computed.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5666"
HREF="node106.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5660"
HREF="node101.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5656"
HREF="node104.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5662"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5664"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5667"
HREF="node106.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5661"
HREF="node101.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5657"
HREF="node104.html">Computing s<SUB>i</SUB>, , and</A>
  <B> <A NAME="tex2html5663"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5665"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|