1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Error Bounds for the Generalized Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Error Bounds for the Generalized Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node108.html">
<LINK REL="previous" HREF="node100.html">
<LINK REL="up" HREF="node72.html">
<LINK REL="next" HREF="node107.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5680"
HREF="node107.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5674"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5668"
HREF="node105.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5676"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5678"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5681"
HREF="node107.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5675"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5669"
HREF="node105.html">Singular Eigenproblems</A>
  <B> <A NAME="tex2html5677"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5679"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION034120000000000000000"></A>
<A NAME="secGSVDbound"></A>
<BR>
Error Bounds for the Generalized Singular Value Decomposition
</H1>
<P>
The generalized (or quotient) singular value decomposition
of an <B><I>m</I></B>-by-<B><I>n</I></B> matrix
<B><I>A</I></B> and a <B><I>p</I></B>-by-<B><I>n</I></B> matrix <B><I>B</I></B> is the pair of factorizations
<A NAME="12895"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = U \Sigma_1 [0,R] Q^T \; \; {\rm and} \; \;
B = V \Sigma_2 [0,R] Q^T
\end{displaymath}
-->
<IMG
WIDTH="316" HEIGHT="31" BORDER="0"
SRC="img865.png"
ALT="\begin{displaymath}
A = U \Sigma_1 [0,R] Q^T \; \; {\rm and} \; \;
B = V \Sigma_2 [0,R] Q^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>U</I></B>, <B><I>V</I></B>, <B><I>Q</I></B>, <B><I>R</I></B>, <IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img67.png"
ALT="$\Sigma_1$">
and <IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img68.png"
ALT="$\Sigma_2$">
are defined
as follows.
<UL><LI><B><I>U</I></B> is <B><I>m</I></B>-by-<B><I>m</I></B>, <B><I>V</I></B> is <B><I>p</I></B>-by-<B><I>p</I></B>, <B><I>Q</I></B> is <B><I>n</I></B>-by-<B><I>n</I></B>,
and all three matrices are orthogonal. If <B><I>A</I></B> and
<B><I>B</I></B> are complex, these matrices are unitary instead
of orthogonal, and <B><I>Q</I><SUP><I>T</I></SUP></B> should be
replaced by <B><I>Q</I><SUP><I>H</I></SUP></B> in the pair of factorizations.
<LI><B><I>R</I></B> is <B><I>r</I></B>-by-<B><I>r</I></B>, upper triangular and nonsingular.
<B>[0,<I>R</I>]</B> is <B><I>r</I></B>-by-<B><I>n</I></B>. The integer <B><I>r</I></B> is the rank of
<!-- MATH
$\left( \begin{array}{c} A \\B \end{array} \right)$
-->
<IMG
WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img19.png"
ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">,
and satisfies <IMG
WIDTH="46" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img66.png"
ALT="$r \leq n$">.
<LI><IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img67.png"
ALT="$\Sigma_1$">
is <B><I>m</I></B>-by-<B><I>r</I></B>,
<IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img68.png"
ALT="$\Sigma_2$">
is <B><I>p</I></B>-by-<B><I>r</I></B>, both are real, nonnegative and diagonal,
and
<!-- MATH
$\Sigma_1^T \Sigma_1 + \Sigma_2^T \Sigma_2 = I$
-->
<IMG
WIDTH="145" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img69.png"
ALT="$\Sigma_1^T \Sigma_1 + \Sigma_2^T \Sigma_2 = I$">.
Write
<!-- MATH
$\Sigma_1^T \Sigma_1 = {\rm diag} ( \alpha_1^2 , \ldots , \alpha_r^2 )$
-->
<IMG
WIDTH="193" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img70.png"
ALT="$\Sigma_1^T \Sigma_1 = {\rm diag} ( \alpha_1^2 , \ldots , \alpha_r^2 )$">
and
<!-- MATH
$\Sigma_2^T \Sigma_2 = {\rm diag} ( \beta_1^2 , \ldots , \beta_r^2 )$
-->
<IMG
WIDTH="192" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img71.png"
ALT="$\Sigma_2^T \Sigma_2 = {\rm diag} ( \beta_1^2 , \ldots , \beta_r^2 )$">,
where <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$\alpha_i$">
and <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
lie in the interval from 0 to 1.
The ratios
<!-- MATH
$\alpha_1 / \beta_1 , \ldots,, \alpha_r / \beta_r$
-->
<IMG
WIDTH="140" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img866.png"
ALT="$\alpha_1 / \beta_1 , \ldots,, \alpha_r / \beta_r$">
are called the <B>generalized singular values</B> of the pair <B><I>A</I></B>, <B><I>B</I></B>.
If <IMG
WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img75.png"
ALT="$\beta_i = 0$">,
then the generalized singular value
<!-- MATH
$\alpha_i / \beta_i$
-->
<IMG
WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img76.png"
ALT="$\alpha_i / \beta_i$">
is <B>infinite</B>.
For details on the structure of <IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img67.png"
ALT="$\Sigma_1$">,
<IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img68.png"
ALT="$\Sigma_2$">
and <B><I>R</I></B>, see
section <A HREF="node36.html#sectionGSVDdriver">2.3.5.3</A>.
</UL>
<P>
The generalized singular value decomposition is
computed by driver routine xGGSVD (see section <A HREF="node36.html#sectionGSVDdriver">2.3.5.3</A>).
<A NAME="12906"></A><A NAME="12907"></A><A NAME="12908"></A><A NAME="12909"></A>
We will give error bounds for the generalized
<A NAME="12910"></A>
singular values in the
common case where
<!-- MATH
$\left( \begin{array}{c} A \\B \end{array} \right)$
-->
<IMG
WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img19.png"
ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">
has full
rank <B><I>r</I>=<I>n</I></B>.
Let
<!-- MATH
$\hat{\alpha}_i$
-->
<IMG
WIDTH="21" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img867.png"
ALT="$\hat{\alpha}_i$">
and <IMG
WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img868.png"
ALT="$\hat{\beta}_i$">
be the values of <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$\alpha_i$">
and <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">,
respectively,
computed by xGGSVD.
The approximate error
bound<A NAME="footfnm 0"><SUP>4.10</SUP></A>for these values is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
| \hat{\alpha}_i - \alpha_i | +
| \hat{\beta}_i - \beta_i | \leq {\tt SERRBD} \; \; .
\end{displaymath}
-->
<IMG
WIDTH="237" HEIGHT="31" BORDER="0"
SRC="img869.png"
ALT="\begin{displaymath}
\vert \hat{\alpha}_i - \alpha_i \vert +
\vert \hat{\beta}_i - \beta_i \vert \leq {\tt SERRBD} \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Note that if <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
is close to zero, then a true
generalized singular value
<!-- MATH
$\alpha_i / \beta_i$
-->
<IMG
WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img76.png"
ALT="$\alpha_i / \beta_i$">
can differ greatly in magnitude from
the computed generalized singular value
<!-- MATH
$\hat{\alpha}_i / \hat{\beta}_i$
-->
<IMG
WIDTH="45" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img870.png"
ALT="$\hat{\alpha}_i / \hat{\beta}_i$">,
even if <TT>SERRBD</TT> is
close to its minimum <IMG
WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$\epsilon$">.
<A NAME="12921"></A>
<P>
Here is another way to interpret <TT>SERRBD</TT>:
if we think of <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$\alpha_i$">
and <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
as representing the <EM>subspace</EM> <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
consisting of the straight line through the origin with slope
<!-- MATH
$\alpha_i / \beta_i$
-->
<IMG
WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img76.png"
ALT="$\alpha_i / \beta_i$">,
and similarly
<!-- MATH
$\hat{\alpha}_i$
-->
<IMG
WIDTH="21" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img867.png"
ALT="$\hat{\alpha}_i$">
and <IMG
WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img868.png"
ALT="$\hat{\beta}_i$">
representing the subspace <IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">,
then <IMG
WIDTH="59" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img871.png"
ALT="${\tt SERRBD}$">
bounds the acute angle between
<IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
and <IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">.
<A NAME="12929"></A>
<A NAME="12930"></A>
Note that any two
lines through the origin with nearly vertical slopes
(very large
<!-- MATH
$\alpha / \beta$
-->
<IMG
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img872.png"
ALT="$\alpha / \beta$">)
are close together in angle.
(This is related to the <EM>chordal distance</EM> in
section <A HREF="node99.html#secGSEPFurtherDetails">4.10.1</A>.)
<P>
<TT>SERRBD</TT> can be computed by the following code fragment,
which for simplicity assumes <IMG
WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img105.png"
ALT="$m \geq n$">.
(The assumption <B><I>r</I>=<I>n</I></B> implies only that <IMG
WIDTH="84" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img873.png"
ALT="$p+m \geq n$">.
Error bounds can also be computed when
<!-- MATH
$p+m \geq n > m$
-->
<IMG
WIDTH="122" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img874.png"
ALT="$p+m \geq n > m$">,
with slightly more complicated code.)
<P>
<PRE>
EPSMCH = SLAMCH( 'E' )
* Compute generalized singular values of A and B
CALL SGGSVD( 'N', 'N', 'N', M, N, P, K, L, A, LDA, B,
$ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
$ WORK, IWORK, INFO )
* Compute rank of [A',B']'
RANK = K+L
IF( INFO.GT.0 ) THEN
PRINT *,'SGGSVD did not converge'
ELSE IF( RANK.LT.N ) THEN
PRINT *,'[A**T,B**T]**T not full rank'
ELSE IF ( M .GE. N .AND. N .GT. 0 ) THEN
* Compute reciprocal condition number RCOND of R
CALL STRCON( 'I', 'U', 'N', N, A, LDA, RCOND, WORK, IWORK,
$ INFO )
RCOND = MAX( RCOND, EPSMCH )
SERRBD = EPSMCH / RCOND
END IF
</PRE>
<A NAME="12936"></A>
<P>
For example<A NAME="footfnm 0"><SUP>4.11</SUP></A>, if
<!-- MATH
${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$
-->
<IMG
WIDTH="259" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img397.png"
ALT="${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$">,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{ccc} 1 & 2 & 3 \\3 & 2 & 1 \\4 & 5 & 6 \\7 & 8 & 8 \end{array} \right)
\; \; {\rm and} \; \;
B = \left( \begin{array}{ccc} -2 & -3 & 3 \\4 & 6 & 5 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="349" HEIGHT="93" BORDER="0"
SRC="img875.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & ...
...egin{array}{ccc} -2 & -3 & 3 \\ 4 & 6 & 5 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then, to 4 decimal places,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left( \begin{array}{c} \alpha_1 \\\alpha_2 \\\alpha_3 \end{array} \right) =
\left( \begin{array}{c} \hat{\alpha}_1 \\\hat{\alpha}_2 \\\hat{\alpha}_3 \end{array} \right) =
\left( \begin{array}{c} 1.000 \\.7960 \\7.993 \cdot 10^{-2} \end{array} \right)
\; \; {\rm and} \; \;
\left( \begin{array}{c} \beta_1 \\\beta_2 \\\beta_3 \end{array} \right) =
\left( \begin{array}{c} \hat{\beta}_1 \\\hat{\beta}_2 \\\hat{\beta}_3 \end{array} \right) =
\left( \begin{array}{c} 0 \\.6053 \\.9968 \end{array} \right) ,
\end{displaymath}
-->
<IMG
WIDTH="611" HEIGHT="76" BORDER="0"
SRC="img876.png"
ALT="\begin{displaymath}
\left( \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \en...
...ft( \begin{array}{c} 0 \\ .6053 \\ .9968 \end{array} \right) ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<!-- MATH
${\tt SERRBD} = 1.4 \cdot 10^{-6}$
-->
<IMG
WIDTH="153" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img877.png"
ALT="${\tt SERRBD} = 1.4 \cdot 10^{-6}$">,
and the true errors
are <B>0</B>,
<!-- MATH
$4.3 \cdot 10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img408.png"
ALT="$4.3 \cdot 10^{-7}$">
and
<!-- MATH
$1.5 \cdot 10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img642.png"
ALT="$1.5 \cdot 10^{-7}$">.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html5682"
HREF="node107.html">Further Details: Error Bounds for the Generalized Singular Value Decomposition</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5680"
HREF="node107.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5674"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5668"
HREF="node105.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5676"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5678"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5681"
HREF="node107.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5675"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5669"
HREF="node105.html">Singular Eigenproblems</A>
  <B> <A NAME="tex2html5677"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5679"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|