File: node106.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (548 lines) | stat: -rw-r--r-- 15,266 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Error Bounds for the Generalized Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Error Bounds for the Generalized Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node108.html">
<LINK REL="previous" HREF="node100.html">
<LINK REL="up" HREF="node72.html">
<LINK REL="next" HREF="node107.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5680"
 HREF="node107.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5674"
 HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5668"
 HREF="node105.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5676"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5678"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5681"
 HREF="node107.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5675"
 HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5669"
 HREF="node105.html">Singular Eigenproblems</A>
 &nbsp <B>  <A NAME="tex2html5677"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5679"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H1><A NAME="SECTION034120000000000000000"></A>
<A NAME="secGSVDbound"></A>
<BR>
Error Bounds for the Generalized Singular Value Decomposition
</H1>

<P>
The generalized (or quotient) singular value decomposition
of an <B><I>m</I></B>-by-<B><I>n</I></B> matrix
<B><I>A</I></B> and a <B><I>p</I></B>-by-<B><I>n</I></B> matrix <B><I>B</I></B> is the pair of factorizations
<A NAME="12895"></A>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = U \Sigma_1 [0,R] Q^T \; \; {\rm and} \; \;
B = V \Sigma_2 [0,R] Q^T
\end{displaymath}
 -->


<IMG
 WIDTH="316" HEIGHT="31" BORDER="0"
 SRC="img865.png"
 ALT="\begin{displaymath}
A = U \Sigma_1 [0,R] Q^T \; \; {\rm and} \; \;
B = V \Sigma_2 [0,R] Q^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>U</I></B>, <B><I>V</I></B>, <B><I>Q</I></B>, <B><I>R</I></B>, <IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img67.png"
 ALT="$\Sigma_1$">
and <IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img68.png"
 ALT="$\Sigma_2$">
are defined
as follows.

<UL><LI><B><I>U</I></B> is <B><I>m</I></B>-by-<B><I>m</I></B>, <B><I>V</I></B> is <B><I>p</I></B>-by-<B><I>p</I></B>, <B><I>Q</I></B> is <B><I>n</I></B>-by-<B><I>n</I></B>,
and all three matrices are orthogonal.  If <B><I>A</I></B> and
<B><I>B</I></B> are complex, these matrices are unitary instead
of orthogonal, and <B><I>Q</I><SUP><I>T</I></SUP></B> should be
replaced by <B><I>Q</I><SUP><I>H</I></SUP></B> in the pair of factorizations.

<LI><B><I>R</I></B> is <B><I>r</I></B>-by-<B><I>r</I></B>, upper triangular and nonsingular.
<B>[0,<I>R</I>]</B> is <B><I>r</I></B>-by-<B><I>n</I></B>. The integer <B><I>r</I></B> is the rank of

<!-- MATH
 $\left( \begin{array}{c} A \\B \end{array} \right)$
 -->
<IMG
 WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
 SRC="img19.png"
 ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">,
and satisfies <IMG
 WIDTH="46" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img66.png"
 ALT="$r \leq n$">.

<LI><IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img67.png"
 ALT="$\Sigma_1$">
is <B><I>m</I></B>-by-<B><I>r</I></B>,
<IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img68.png"
 ALT="$\Sigma_2$">
is <B><I>p</I></B>-by-<B><I>r</I></B>, both are real, nonnegative and diagonal,
and 
<!-- MATH
 $\Sigma_1^T \Sigma_1 + \Sigma_2^T \Sigma_2 = I$
 -->
<IMG
 WIDTH="145" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img69.png"
 ALT="$\Sigma_1^T \Sigma_1 + \Sigma_2^T \Sigma_2 = I$">.
Write

<!-- MATH
 $\Sigma_1^T \Sigma_1 = {\rm diag} ( \alpha_1^2 , \ldots , \alpha_r^2 )$
 -->
<IMG
 WIDTH="193" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img70.png"
 ALT="$\Sigma_1^T \Sigma_1 = {\rm diag} ( \alpha_1^2 , \ldots , \alpha_r^2 )$">
and

<!-- MATH
 $\Sigma_2^T \Sigma_2 = {\rm diag} ( \beta_1^2 , \ldots , \beta_r^2 )$
 -->
<IMG
 WIDTH="192" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img71.png"
 ALT="$\Sigma_2^T \Sigma_2 = {\rm diag} ( \beta_1^2 , \ldots , \beta_r^2 )$">,
where <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$\alpha_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
lie in the interval from 0 to 1.
The ratios

<!-- MATH
 $\alpha_1 / \beta_1 , \ldots,,  \alpha_r / \beta_r$
 -->
<IMG
 WIDTH="140" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img866.png"
 ALT="$\alpha_1 / \beta_1 , \ldots,, \alpha_r / \beta_r$">
are called the <B>generalized singular values</B> of the pair <B><I>A</I></B>, <B><I>B</I></B>.
If <IMG
 WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img75.png"
 ALT="$\beta_i = 0$">,
then the generalized singular value

<!-- MATH
 $\alpha_i / \beta_i$
 -->
<IMG
 WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img76.png"
 ALT="$\alpha_i / \beta_i$">
is <B>infinite</B>.
For details on the structure of <IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img67.png"
 ALT="$\Sigma_1$">,
<IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img68.png"
 ALT="$\Sigma_2$">
and <B><I>R</I></B>, see
section&nbsp;<A HREF="node36.html#sectionGSVDdriver">2.3.5.3</A>.

</UL>

<P>
The generalized singular value decomposition is
computed by driver routine xGGSVD (see section&nbsp;<A HREF="node36.html#sectionGSVDdriver">2.3.5.3</A>).
<A NAME="12906"></A><A NAME="12907"></A><A NAME="12908"></A><A NAME="12909"></A>
We will give error bounds for the generalized
<A NAME="12910"></A>
singular values in the
common case where 
<!-- MATH
 $\left( \begin{array}{c} A \\B \end{array} \right)$
 -->
<IMG
 WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
 SRC="img19.png"
 ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">
has full
rank <B><I>r</I>=<I>n</I></B>.
Let 
<!-- MATH
 $\hat{\alpha}_i$
 -->
<IMG
 WIDTH="21" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img867.png"
 ALT="$\hat{\alpha}_i$">
and <IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img868.png"
 ALT="$\hat{\beta}_i$">
be the values of <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$\alpha_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">,
respectively,
computed by xGGSVD.
The approximate error
bound<A NAME="footfnm 0"><SUP>4.10</SUP></A>for these values is
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| \hat{\alpha}_i - \alpha_i | +
| \hat{\beta}_i - \beta_i |  \leq {\tt SERRBD} \; \; .
\end{displaymath}
 -->


<IMG
 WIDTH="237" HEIGHT="31" BORDER="0"
 SRC="img869.png"
 ALT="\begin{displaymath}
\vert \hat{\alpha}_i - \alpha_i \vert +
\vert \hat{\beta}_i - \beta_i \vert \leq {\tt SERRBD} \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Note that if <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
is close to zero, then a true
generalized singular value

<!-- MATH
 $\alpha_i / \beta_i$
 -->
<IMG
 WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img76.png"
 ALT="$\alpha_i / \beta_i$">
can differ greatly in magnitude from
the computed generalized singular value

<!-- MATH
 $\hat{\alpha}_i / \hat{\beta}_i$
 -->
<IMG
 WIDTH="45" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img870.png"
 ALT="$\hat{\alpha}_i / \hat{\beta}_i$">,
even if <TT>SERRBD</TT> is
close to its minimum <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">.
<A NAME="12921"></A>

<P>
Here is another way to interpret <TT>SERRBD</TT>:
if we think of <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$\alpha_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
as representing the <EM>subspace</EM> <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
consisting of the straight line through the origin with slope

<!-- MATH
 $\alpha_i / \beta_i$
 -->
<IMG
 WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img76.png"
 ALT="$\alpha_i / \beta_i$">,
and similarly 
<!-- MATH
 $\hat{\alpha}_i$
 -->
<IMG
 WIDTH="21" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img867.png"
 ALT="$\hat{\alpha}_i$">
and <IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img868.png"
 ALT="$\hat{\beta}_i$">
representing the subspace <IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">,
then <IMG
 WIDTH="59" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img871.png"
 ALT="${\tt SERRBD}$">
bounds the acute angle between
<IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
and <IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">.
<A NAME="12929"></A>
<A NAME="12930"></A>
Note that any two
lines through the origin with nearly vertical slopes
(very large 
<!-- MATH
 $\alpha / \beta$
 -->
<IMG
 WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img872.png"
 ALT="$\alpha / \beta$">)
are close together in angle.
(This is related to the <EM>chordal distance</EM> in
section&nbsp;<A HREF="node99.html#secGSEPFurtherDetails">4.10.1</A>.)

<P>
<TT>SERRBD</TT> can be computed by the following code fragment,
which for simplicity assumes <IMG
 WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img105.png"
 ALT="$m \geq n$">.
(The assumption <B><I>r</I>=<I>n</I></B> implies only that <IMG
 WIDTH="84" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img873.png"
 ALT="$p+m \geq n$">.
Error bounds can also be computed when 
<!-- MATH
 $p+m \geq n > m$
 -->
<IMG
 WIDTH="122" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img874.png"
 ALT="$p+m \geq n &gt; m$">,
with slightly more complicated code.)

<P>
<PRE>
      EPSMCH = SLAMCH( 'E' )
*     Compute generalized singular values of A and B
      CALL SGGSVD( 'N', 'N', 'N', M, N, P, K, L, A, LDA, B,
     $             LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
     $             WORK, IWORK, INFO )
*     Compute rank of [A',B']'
      RANK = K+L
      IF( INFO.GT.0 ) THEN
         PRINT *,'SGGSVD did not converge'
      ELSE IF( RANK.LT.N ) THEN
         PRINT *,'[A**T,B**T]**T not full rank'
      ELSE IF ( M .GE. N .AND. N .GT. 0 ) THEN
*        Compute reciprocal condition number RCOND of R
         CALL STRCON( 'I', 'U', 'N', N, A, LDA, RCOND, WORK, IWORK,
     $                INFO )
         RCOND = MAX( RCOND, EPSMCH )
         SERRBD = EPSMCH / RCOND
      END IF
</PRE>
<A NAME="12936"></A>

<P>
For example<A NAME="footfnm 0"><SUP>4.11</SUP></A>, if

<!-- MATH
 ${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$
 -->
<IMG
 WIDTH="259" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img397.png"
 ALT="${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$">,
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = \left( \begin{array}{ccc} 1 & 2 & 3 \\3 & 2 & 1 \\4 & 5 & 6 \\7 & 8 & 8 \end{array} \right) 
\; \; {\rm and} \; \;
B = \left( \begin{array}{ccc} -2 & -3 & 3 \\4 & 6 & 5 \end{array} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="349" HEIGHT="93" BORDER="0"
 SRC="img875.png"
 ALT="\begin{displaymath}
A = \left( \begin{array}{ccc} 1 &amp; 2 &amp; 3 \\ 3 &amp; 2 &amp; 1 \\ 4 &amp; ...
...egin{array}{ccc} -2 &amp; -3 &amp; 3 \\ 4 &amp; 6 &amp; 5 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then, to 4 decimal places,
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\left( \begin{array}{c} \alpha_1 \\\alpha_2 \\\alpha_3 \end{array} \right) =
\left( \begin{array}{c} \hat{\alpha}_1 \\\hat{\alpha}_2 \\\hat{\alpha}_3 \end{array} \right) =
\left( \begin{array}{c} 1.000 \\.7960 \\7.993 \cdot 10^{-2} \end{array} \right) 
\; \; {\rm and} \; \;
\left( \begin{array}{c} \beta_1 \\\beta_2 \\\beta_3 \end{array} \right) =
\left( \begin{array}{c} \hat{\beta}_1 \\\hat{\beta}_2 \\\hat{\beta}_3 \end{array} \right) =
\left( \begin{array}{c} 0 \\.6053 \\.9968 \end{array} \right) ,
\end{displaymath}
 -->


<IMG
 WIDTH="611" HEIGHT="76" BORDER="0"
 SRC="img876.png"
 ALT="\begin{displaymath}
\left( \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \en...
...ft( \begin{array}{c} 0 \\ .6053 \\ .9968 \end{array} \right) ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>

<!-- MATH
 ${\tt SERRBD} = 1.4 \cdot 10^{-6}$
 -->
<IMG
 WIDTH="153" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img877.png"
 ALT="${\tt SERRBD} = 1.4 \cdot 10^{-6}$">,
and the true errors
are <B>0</B>, 
<!-- MATH
 $4.3 \cdot 10^{-7}$
 -->
<IMG
 WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img408.png"
 ALT="$4.3 \cdot 10^{-7}$">
and 
<!-- MATH
 $1.5 \cdot 10^{-7}$
 -->
<IMG
 WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img642.png"
 ALT="$1.5 \cdot 10^{-7}$">.

<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>

<UL>
<LI><A NAME="tex2html5682"
 HREF="node107.html">Further Details:  Error Bounds for the Generalized Singular Value Decomposition</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5680"
 HREF="node107.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5674"
 HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5668"
 HREF="node105.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5676"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5678"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5681"
 HREF="node107.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5675"
 HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5669"
 HREF="node105.html">Singular Eigenproblems</A>
 &nbsp <B>  <A NAME="tex2html5677"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5679"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>