1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Representation of Orthogonal or Unitary Matrices</TITLE>
<META NAME="description" CONTENT="Representation of Orthogonal or Unitary Matrices">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node121.html">
<LINK REL="up" HREF="node109.html">
<LINK REL="next" HREF="node129.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html6013"
HREF="node129.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6007"
HREF="node109.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6003"
HREF="node127.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6009"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6011"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6014"
HREF="node129.html">Installing LAPACK Routines</A>
<B> Up:</B> <A NAME="tex2html6008"
HREF="node109.html">Documentation and Software Conventions</A>
<B> Previous:</B> <A NAME="tex2html6004"
HREF="node127.html">Real Diagonal Elements of</A>
  <B> <A NAME="tex2html6010"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6012"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION03540000000000000000"></A><A NAME="secorthog"></A>
<BR>
Representation of Orthogonal or Unitary Matrices
</H1>
<P>
A real orthogonal or complex unitary matrix (usually denoted <B><I>Q</I></B>) is often
represented<A NAME="19987"></A> in
LAPACK as a product of <B>elementary reflectors</B> -- also referred to as
<A NAME="19989"></A>
<A NAME="19990"></A>
<B>elementary Householder matrices</B> (usually denoted <B><I>H</I><SUB><I>i</I></SUB></B>). For example,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
Q = H_{1} H_{2} \ldots H_{k}.
\end{displaymath}
-->
<IMG
WIDTH="133" HEIGHT="30" BORDER="0"
SRC="img938.png"
ALT="\begin{displaymath}Q = H_{1} H_{2} \ldots H_{k}. \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Most users need not be aware
of the details, because LAPACK routines are provided to work with this
representation:
<P>
<UL><LI>routines whose names begin SORG- (real) or CUNG- (complex) can generate
all or part of <B><I>Q</I></B> explicitly;
<P>
<LI>routines whose name begin SORM- (real) or CUNM- (complex) can multiply
a given matrix by <B><I>Q</I></B> or <B><I>Q</I><SUP><I>H</I></SUP></B> without forming <B><I>Q</I></B> explicitly.
<P>
</UL>
<P>
The following further details may occasionally be useful.
<P>
An elementary reflector (or elementary Householder matrix) <B><I>H</I></B> of order
<B><I>n</I></B> is a
unitary matrix<A NAME="19999"></A> of the form
<A NAME="20000"></A>
<A NAME="20001"></A>
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
H = I - \tau v v^{H}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="Hdef"></A><IMG
WIDTH="109" HEIGHT="28" BORDER="0"
SRC="img939.png"
ALT="\begin{displaymath}
H = I - \tau v v^{H}
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(5.1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img220.png"
ALT="$\tau$">
is a scalar, and <B><I>v</I></B> is an <B><I>n</I></B>-vector, with
<!-- MATH
$| \tau | ^2 || v || _2 ^2 = 2 \rm {Re}(\tau$
-->
<IMG
WIDTH="136" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img940.png"
ALT="$\vert \tau \vert ^2 \vert\vert v \vert\vert _2 ^2 = 2 \rm {Re}(\tau$">); <B><I>v</I></B> is often referred to
as the <B>Householder vector</B><A NAME="20008"></A> .
Often <B><I>v</I></B> has several leading or trailing zero elements, but for the
purpose of this discussion assume that <B><I>H</I></B> has no such special structure.
<P>
There is some redundancy in the representation (<A HREF="node128.html#Hdef">5.1</A>), which can be
removed in
various ways. The representation used in LAPACK (which differs from
those used in LINPACK or EISPACK) sets <B><I>v</I><SUB>1</SUB> = 1</B>; hence <B><I>v</I><SUB>1</SUB></B> need not
be stored. In real arithmetic,
<!-- MATH
$1 \leq \tau \leq 2$
-->
<IMG
WIDTH="78" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img941.png"
ALT="$1 \leq \tau \leq 2$">,
except that
<IMG
WIDTH="46" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img942.png"
ALT="$\tau = 0$">
implies <B><I>H</I> = <I>I</I></B>.
<P>
In complex arithmetic<A NAME="20010"></A>, <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img220.png"
ALT="$\tau$">
may be
complex, and satisfies
<!-- MATH
$1 \leq \rm {Re}(\tau) \leq 2$
-->
<IMG
WIDTH="112" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img943.png"
ALT="$1 \leq \rm {Re}(\tau) \leq 2$">
and
<!-- MATH
$| \tau - 1 | \leq 1$
-->
<IMG
WIDTH="86" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img944.png"
ALT="$\vert \tau - 1 \vert \leq 1$">.
Thus a complex <B><I>H</I></B> is
not Hermitian (as it is in other representations), but it is unitary,
which is the important property. The advantage of allowing <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img220.png"
ALT="$\tau$">
to be
complex is that, given an arbitrary complex vector <B><I>x</I></B>, <B><I>H</I></B> can be computed
so that <BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H^H x = \beta (1, 0, \ldots , 0)^T
\end{displaymath}
-->
<IMG
WIDTH="168" HEIGHT="31" BORDER="0"
SRC="img945.png"
ALT="\begin{displaymath}H^H x = \beta (1, 0, \ldots , 0)^T \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
with <I>real</I> <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">.
This is useful, for example,
when reducing a complex Hermitian matrix to real symmetric tridiagonal form<A NAME="20013"></A>,
or a complex rectangular matrix to real bidiagonal form<A NAME="20014"></A>.
<P>
For further details, see Lehoucq [<A
HREF="node151.html#lawn72">79</A>].
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html6013"
HREF="node129.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6007"
HREF="node109.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6003"
HREF="node127.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6009"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6011"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6014"
HREF="node129.html">Installing LAPACK Routines</A>
<B> Up:</B> <A NAME="tex2html6008"
HREF="node109.html">Documentation and Software Conventions</A>
<B> Previous:</B> <A NAME="tex2html6004"
HREF="node127.html">Real Diagonal Elements of</A>
  <B> <A NAME="tex2html6010"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6012"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|