1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Computational Failures and INFO > 0</TITLE>
<META NAME="description" CONTENT="Computational Failures and INFO > 0">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node137.html">
<LINK REL="up" HREF="node136.html">
<LINK REL="next" HREF="node139.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html6161"
HREF="node139.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6155"
HREF="node136.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6151"
HREF="node137.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6157"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6159"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6162"
HREF="node139.html">Wrong Results</A>
<B> Up:</B> <A NAME="tex2html6156"
HREF="node136.html">Failures Detected by LAPACK</A>
<B> Previous:</B> <A NAME="tex2html6152"
HREF="node137.html">Invalid Arguments and XERBLA</A>
  <B> <A NAME="tex2html6158"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6160"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03742000000000000000"></A>
<A NAME="21113"></A><A NAME="21114"></A>
<BR>
Computational Failures and INFO <B>></B> 0
</H2>
A positive value of INFO on return from an LAPACK routine indicates a
failure in the course of the algorithm. Common causes are:
<UL><LI>a matrix is singular (to working precision);
<LI>a symmetric matrix is not positive definite;
<LI>an iterative algorithm for computing eigenvalues or eigenvectors
fails to converge in the permitted number of iterations.
</UL>
For example, if SGESVX<A NAME="21117"></A> is called to solve a system of equations
with a coefficient matrix that is approximately singular,
it may detect exact singularity at the <B><I>i</I><SUP><I>th</I></SUP></B> stage of the <B><I>LU</I></B>
factorization, in which case it returns INFO = <B><I>i</I></B>;
or (more probably) it may compute an estimate of the reciprocal condition number
that is less than machine precision, in which case it returns INFO = <B><I>n</I></B>+1.
Again, the documentation in Part <A HREF="node149.html#partroutines">2</A> should be consulted for a
description of the error.
<P>
When a failure with INFO <B>></B> 0 occurs, control is <EM>always</EM> returned
to the calling program; XERBLA is <EM>not</EM> called, and no error message
is written.
It is worth repeating that it is good practice always to check for
a non-zero value of INFO on return from an LAPACK routine.
<P>
A failure with INFO <B>></B> 0 may indicate any of the following:
<P>
<UL><LI>an inappropriate routine was used:
for example, if a routine fails because a symmetric matrix turns out not to be
positive definite, consider using a routine for symmetric indefinite matrices.
<P>
<LI>a single precision routine was used when double precision was needed:
for example, if SGESVX<A NAME="21123"></A> reports approximate singularity
(as illustrated above), the corresponding double precision routine DGESVX
may be able to solve the problem (but nevertheless the problem is
ill-conditioned).
<P>
<LI>a programming error occurred in generating the data supplied
to a routine: for example, even though theoretically a matrix should be
well-conditioned and positive-definite, a programming error in generating
the matrix could easily destroy either of those properties.
<P>
<LI>a programming error occurred in calling the routine, of the kind
listed in Section <A HREF="node135.html#seccommonerrors">7.2</A>.
<P>
</UL>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html6161"
HREF="node139.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6155"
HREF="node136.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6151"
HREF="node137.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6157"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6159"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6162"
HREF="node139.html">Wrong Results</A>
<B> Up:</B> <A NAME="tex2html6156"
HREF="node136.html">Failures Detected by LAPACK</A>
<B> Previous:</B> <A NAME="tex2html6152"
HREF="node137.html">Invalid Arguments and XERBLA</A>
  <B> <A NAME="tex2html6158"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6160"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|