1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Notes</TITLE>
<META NAME="description" CONTENT="Notes">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node141.html">
<LINK REL="up" HREF="node141.html">
<LINK REL="next" HREF="node143.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html6214"
HREF="node143.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6208"
HREF="node141.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6204"
HREF="node141.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6210"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6212"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6215"
HREF="node143.html">Index of Auxiliary Routines</A>
<B> Up:</B> <A NAME="tex2html6209"
HREF="node141.html">Index of Driver and</A>
<B> Previous:</B> <A NAME="tex2html6205"
HREF="node141.html">Index of Driver and</A>
  <B> <A NAME="tex2html6211"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6213"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION03810000000000000000">
Notes</A>
</H1>
<P>
<DL COMPACT>
<DT>1.
<DD>This index<A NAME="21182"></A><A NAME="21183"></A> lists related pairs of real and complex routines together,
for example, SBDSQR and CBDSQR.
<P>
<DT>2.
<DD>Driver routines are listed in bold type, for example <B>SGBSV</B> and
<B>CGBSV</B>.
<P>
<DT>3.
<DD>Routines are listed in alphanumeric order
of the real (single precision) routine name (which always begins with S-).
(See subsection <A HREF="node24.html#subsecnaming">2.2.3</A> for details of the LAPACK naming scheme.)
<P>
<DT>4.
<DD>Double precision routines are not listed here;
they have names beginning with D- instead of
S-, or Z- instead of C-.
<P>
<DT>5.
<DD>This index gives only a brief description of the purpose of each
routine. For a precise description, consult the specifications
in Part <A HREF="node149.html#partroutines">2</A>, where the routines appear in the same
order as here.
<P>
<DT>6.
<DD>The text of the descriptions applies to both real and complex routines,
except where alternative words or phrases are indicated, for example
``symmetric/Hermitian'', ``orthogonal/unitary''
or ``quasi-triangular/triangular''. For the real routines <B><I>A</I><SUP><I>H</I></SUP></B> is equivalent
to <B><I>A</I><SUP><I>T</I></SUP></B>.
(The same convention is used in Part <A HREF="node149.html#partroutines">2</A>.)
<P>
<DT>7.
<DD>In a few cases, three routines are listed together, one for
real symmetric, one for complex symmetric, and one for complex Hermitian
matrices (for example SSPCON, CSPCON and CHPCON).
<P>
<DT>8.
<DD>A few routines for real matrices have no complex equivalent (for example
SSTEBZ).
<P>
</DL>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SBDSDC<A NAME="21200"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the singular value decomposition (SVD) of a real bidiagonal matrix,
using a divide and conquer method.</TD>
</TR>
<TR><TD ALIGN="LEFT">SBDSQR<A NAME="21201"></A></TD>
<TD ALIGN="LEFT">CBDSQR<A NAME="21202"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the singular value decomposition (SVD) of a real bidiagonal matrix,
using the bidiagonal <B><I>QR</I></B> algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT">SDISNA</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the reciprocal condition numbers for the eigenvectors of a
real symmetric or complex Hermitian matrix or for the left or right
singular vectors of a general matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBBRD<A NAME="21203"></A></TD>
<TD ALIGN="LEFT">CGBBRD<A NAME="21204"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a general band matrix to real upper bidiagonal form
by an orthogonal/unitary transformation.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBCON<A NAME="21205"></A></TD>
<TD ALIGN="LEFT">CGBCON<A NAME="21206"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number
of a general band matrix,
in either the 1-norm or the infinity-norm,
using the <B><I>LU</I></B> factorization computed by SGBTRF<A NAME="21207"></A>/CGBTRF<A NAME="21208"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBEQU<A NAME="21209"></A></TD>
<TD ALIGN="LEFT">CGBEQU<A NAME="21210"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes row and column scalings to equilibrate a general band matrix
and reduce its condition number.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBRFS<A NAME="21211"></A></TD>
<TD ALIGN="LEFT">CGBRFS<A NAME="21212"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to a general banded system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGBSV<A NAME="21213"></A></B></TD>
<TD ALIGN="LEFT"><B> CGBSV<A NAME="21214"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general banded system of linear equations
<B><I>AX</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGBSVX<A NAME="21215"></A></B></TD>
<TD ALIGN="LEFT"><B> CGBSVX<A NAME="21216"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general banded system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBTRF<A NAME="21217"></A></TD>
<TD ALIGN="LEFT">CGBTRF<A NAME="21218"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes an <B><I>LU</I></B> factorization of a general band matrix,
using partial pivoting with row interchanges.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBTRS<A NAME="21219"></A></TD>
<TD ALIGN="LEFT">CGBTRS<A NAME="21220"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general banded system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
using the <B><I>LU</I></B> factorization computed by SGBTRF<A NAME="21221"></A>/CGBTRF<A NAME="21222"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEBAK<A NAME="21223"></A></TD>
<TD ALIGN="LEFT">CGEBAK<A NAME="21224"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Transforms eigenvectors of a balanced matrix to those of the original matrix
supplied to SGEBAL<A NAME="21225"></A>/CGEBAL<A NAME="21226"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEBAL<A NAME="21227"></A></TD>
<TD ALIGN="LEFT">CGEBAL<A NAME="21228"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Balances a general matrix
in order to improve the accuracy of computed eigenvalues.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEBRD<A NAME="21229"></A></TD>
<TD ALIGN="LEFT">CGEBRD<A NAME="21230"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a general rectangular matrix to real bidiagonal form
by an orthogonal/unitary transformation.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGECON<A NAME="21231"></A></TD>
<TD ALIGN="LEFT">CGECON<A NAME="21232"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number
of a general matrix,
in either the 1-norm or the infinity-norm,
using the <B><I>LU</I></B> factorization computed by SGETRF<A NAME="21233"></A>/CGETRF<A NAME="21234"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEEQU<A NAME="21235"></A></TD>
<TD ALIGN="LEFT">CGEEQU<A NAME="21236"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes row and column scalings to equilibrate a general rectangular matrix
and reduce its condition number.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGEES<A NAME="21237"></A></B></TD>
<TD ALIGN="LEFT"><B> CGEES<A NAME="21238"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the eigenvalues and Schur factorization of a general matrix,
and orders the factorization so that selected eigenvalues are at the top left
of the Schur form.</TD>
</TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGEESX<A NAME="21251"></A></B></TD>
<TD ALIGN="LEFT"><B> CGEESX<A NAME="21252"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the eigenvalues and Schur factorization of a general matrix,
orders the factorization so that selected eigenvalues are at the top left
of the Schur form,
and computes reciprocal condition numbers for the average of the selected
eigenvalues,
and for the associated right invariant<A NAME="21253"></A>
subspace.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGEEV<A NAME="21254"></A> </B></TD>
<TD ALIGN="LEFT"><B> CGEEV<A NAME="21255"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the eigenvalues and left and right eigenvectors of a general matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGEEVX<A NAME="21256"></A></B></TD>
<TD ALIGN="LEFT"><B> CGEEVX<A NAME="21257"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the eigenvalues and left and right eigenvectors of a general matrix,
with preliminary balancing of the matrix,
and computes reciprocal condition numbers for the eigenvalues and right
eigenvectors.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEHRD<A NAME="21258"></A></TD>
<TD ALIGN="LEFT">CGEHRD<A NAME="21259"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a general matrix to upper Hessenberg form
by an orthogonal/unitary similarity transformation.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGELQF<A NAME="21260"></A></TD>
<TD ALIGN="LEFT">CGELQF<A NAME="21261"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes an <B><I>LQ</I></B> factorization of a general rectangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGELS<A NAME="21262"></A> </B></TD>
<TD ALIGN="LEFT"><B> CGELS<A NAME="21263"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the least squares solution to an overdetermined system of linear
equations, <B><I>A X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
or the minimum norm solution of an underdetermined system,
where <B><I>A</I></B> is a general rectangular matrix of full rank,
using a <B><I>QR</I></B> or <B><I>LQ</I></B> factorization of <B><I>A</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGELSD<A NAME="21264"></A></B></TD>
<TD ALIGN="LEFT"><B> CGELSD<A NAME="21265"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the minimum norm least squares solution
to an over- or underdetermined system of linear equations <B><I>A X</I>=<I>B</I></B>,
using the singular value decomposition of <B><I>A</I></B> and a divide and
conquer method.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGELSS<A NAME="21266"></A></B></TD>
<TD ALIGN="LEFT"><B> CGELSS<A NAME="21267"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the minimum norm least squares solution
to an over- or underdetermined system of linear equations <B><I>A X</I>=<I>B</I></B>,
using the singular value decomposition of <B><I>A</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGELSY<A NAME="21268"></A></B></TD>
<TD ALIGN="LEFT"><B> CGELSY<A NAME="21269"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the minimum norm least squares solution
to an over- or underdetermined system of linear equations <B><I>A X</I>=<I>B</I></B>,
using a complete orthogonal factorization of <B><I>A</I></B> via xGEQP3.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEQLF<A NAME="21270"></A></TD>
<TD ALIGN="LEFT">CGEQLF<A NAME="21271"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes a <B><I>QL</I></B> factorization of a general rectangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEQP3<A NAME="21272"></A></TD>
<TD ALIGN="LEFT">CGEQP3<A NAME="21273"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes a <B><I>QR</I></B> factorization with column pivoting of a general rectangular
matrix using Level 3 BLAS.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEQRF<A NAME="21274"></A></TD>
<TD ALIGN="LEFT">CGEQRF<A NAME="21275"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes a <B><I>QR</I></B> factorization of a general rectangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGERFS<A NAME="21276"></A></TD>
<TD ALIGN="LEFT">CGERFS<A NAME="21277"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to a general system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGERQF<A NAME="21278"></A></TD>
<TD ALIGN="LEFT">CGERQF<A NAME="21279"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes an <B><I>RQ</I></B> factorization of a general rectangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGESDD<A NAME="21280"></A></B></TD>
<TD ALIGN="LEFT"><B> CGESDD<A NAME="21281"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the singular value decomposition (SVD) of a general rectangular
matrix using a divide and conquer method.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGESV<A NAME="21282"></A></B></TD>
<TD ALIGN="LEFT"><B> CGESV<A NAME="21283"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general system of linear equations <B><I>AX</I>=<I>B</I></B>.</TD>
</TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGESVD<A NAME="21296"></A></B></TD>
<TD ALIGN="LEFT"><B> CGESVD<A NAME="21297"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the singular value decomposition (SVD) of a general rectangular
matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGESVX<A NAME="21298"></A></B></TD>
<TD ALIGN="LEFT"><B> CGESVX<A NAME="21299"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGETRF<A NAME="21300"></A></TD>
<TD ALIGN="LEFT">CGETRF<A NAME="21301"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes an <B><I>LU</I></B> factorization of a general matrix,
using partial pivoting with row interchanges.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGETRI<A NAME="21302"></A></TD>
<TD ALIGN="LEFT">CGETRI<A NAME="21303"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of a general matrix,
using the <B><I>LU</I></B> factorization computed by SGETRF<A NAME="21304"></A>/CGETRF<A NAME="21305"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGETRS<A NAME="21306"></A></TD>
<TD ALIGN="LEFT">CGETRS<A NAME="21307"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
using the <B><I>LU</I></B> factorization computed by SGETRF<A NAME="21308"></A>/CGETRF<A NAME="21309"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGGBAK<A NAME="21310"></A></TD>
<TD ALIGN="LEFT">CGGBAK<A NAME="21311"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Forms the right or left eigenvectors of a real generalized
eigenvalue problem <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
by backward transformation on
the computed eigenvectors of the balanced pair of matrices output by
SGGBAL<A NAME="21312"></A>/CGGBAL<A NAME="21313"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGGBAL<A NAME="21314"></A></TD>
<TD ALIGN="LEFT">CGGBAL<A NAME="21315"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Balances a pair of general matrices
to improve the accuracy of computed eigenvalues and/or
eigenvectors.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGES<A NAME="21316"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGES<A NAME="21317"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the generalized eigenvalues, Schur form, and the left
and/or right Schur vectors for a pair of nonsymmetric matrices.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGESX<A NAME="21318"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGESX<A NAME="21319"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the generalized eigenvalues, Schur form, and, optionally, the left
and/or right matrices of Schur vectors.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGEV<A NAME="21320"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGEV<A NAME="21321"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the generalized eigenvalues and the left and/or right
generalized eigenvectors for a pair of nonsymmetric matrices.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGEVX<A NAME="21322"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGEVX<A NAME="21323"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the generalized eigenvalues and, optionally, the left and/or right
generalized eigenvectors.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGGLM<A NAME="21324"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGGLM<A NAME="21325"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general Gauss-Markov linear model (GLM)<A NAME="21326"></A> problem using a generalized QR
factorization.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGGHRD<A NAME="21327"></A></TD>
<TD ALIGN="LEFT">CGGHRD<A NAME="21328"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a pair of matrices to generalized upper Hessenberg form
using orthogonal/unitary transformations.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGLSE<A NAME="21329"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGLSE<A NAME="21330"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves the linear equality-constrained least squares (LSE)<A NAME="21331"></A> problem using a
generalized RQ factorization.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGGQRF<A NAME="21332"></A></TD>
<TD ALIGN="LEFT">CGGQRF<A NAME="21333"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes a generalized QR factorization of a pair of matrices.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGGRQF<A NAME="21334"></A></TD>
<TD ALIGN="LEFT">CGGRQF<A NAME="21335"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes a generalized RQ factorization of a pair of matrices.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGGSVD<A NAME="21336"></A></B></TD>
<TD ALIGN="LEFT"><B> CGGSVD<A NAME="21337"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the generalized singular value decomposition (GSVD) of a pair
of general rectangular matrices.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGGSVP<A NAME="21338"></A></TD>
<TD ALIGN="LEFT">CGGSVP<A NAME="21339"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes orthogonal/unitary matrices U, V, and Q as the preprocessing
step for computing the generalized singular value decomposition (GSVD).</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SGTCON<A NAME="21352"></A></TD>
<TD ALIGN="LEFT">CGTCON<A NAME="21353"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of a general tridiagonal
matrix,
in either the 1-norm or the infinity-norm,
using the <B><I>LU</I></B> factorization computed by SGTTRF<A NAME="21354"></A>/CGTTRF<A NAME="21355"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGTRFS<A NAME="21356"></A></TD>
<TD ALIGN="LEFT">CGTRFS<A NAME="21357"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to a general tridiagonal system of linear
equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGTSV<A NAME="21358"></A></B></TD>
<TD ALIGN="LEFT"><B> CGTSV<A NAME="21359"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general tridiagonal system of linear equations <B><I>AX</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SGTSVX<A NAME="21360"></A></B></TD>
<TD ALIGN="LEFT"><B> CGTSVX<A NAME="21361"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general tridiagonal system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGTTRF<A NAME="21362"></A></TD>
<TD ALIGN="LEFT">CGTTRF<A NAME="21363"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes an <B><I>LU</I></B> factorization of a general tridiagonal matrix,
using partial pivoting with row interchanges.</TD>
</TR>
<TR><TD ALIGN="LEFT">SGTTRS<A NAME="21364"></A></TD>
<TD ALIGN="LEFT">CGTTRS<A NAME="21365"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a general tridiagonal system of linear equations
<B><I>AX</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
using the <B><I>LU</I></B> factorization computed by SGTTRF<A NAME="21366"></A>/CGTTRF<A NAME="21367"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SHGEQZ<A NAME="21368"></A></TD>
<TD ALIGN="LEFT">CHGEQZ<A NAME="21369"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Implements a single-/double-shift version of the QZ
method for finding the generalized eigenvalues of a pair of general
matrices, which can simultaneously be reduced to generalized Schur form
using orthogonal/unitary transformations.</TD>
</TR>
<TR><TD ALIGN="LEFT">SHSEIN<A NAME="21370"></A></TD>
<TD ALIGN="LEFT">CHSEIN<A NAME="21371"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes specified right and/or left eigenvectors of an upper Hessenberg matrix
by inverse iteration.</TD>
</TR>
<TR><TD ALIGN="LEFT">SHSEQR<A NAME="21372"></A></TD>
<TD ALIGN="LEFT">CHSEQR<A NAME="21373"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,
using the multishift <B><I>QR</I></B> algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT">SOPGTR<A NAME="21374"></A></TD>
<TD ALIGN="LEFT">CUPGTR<A NAME="21375"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates the orthogonal/unitary transformation matrix
from a reduction to tridiagonal form determined by SSPTRD<A NAME="21376"></A>/CHPTRD<A NAME="21377"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SOPMTR<A NAME="21378"></A></TD>
<TD ALIGN="LEFT">CUPMTR<A NAME="21379"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary transformation matrix
from a reduction to tridiagonal form determined by SSPTRD<A NAME="21380"></A>/CHPTRD<A NAME="21381"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGBR<A NAME="21382"></A></TD>
<TD ALIGN="LEFT">CUNGBR<A NAME="21383"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates the orthogonal/unitary transformation matrices
from a reduction to bidiagonal form determined by SGEBRD<A NAME="21384"></A>/CGEBRD<A NAME="21385"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGHR<A NAME="21386"></A></TD>
<TD ALIGN="LEFT">CUNGHR<A NAME="21387"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates the orthogonal/unitary transformation matrix
from a reduction to Hessenberg form determined by SGEHRD<A NAME="21388"></A>/CGEHRD<A NAME="21389"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGLQ<A NAME="21390"></A></TD>
<TD ALIGN="LEFT">CUNGLQ<A NAME="21391"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates all or part of the orthogonal/unitary matrix <B><I>Q</I></B>
from an <B><I>LQ</I></B> factorization determined by SGELQF<A NAME="21392"></A>/CGELQF<A NAME="21393"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGQL<A NAME="21394"></A></TD>
<TD ALIGN="LEFT">CUNGQL<A NAME="21395"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates all or part of the orthogonal/unitary matrix <B><I>Q</I></B>
from a <B><I>QL</I></B> factorization determined by SGEQLF<A NAME="21396"></A>/CGEQLF<A NAME="21397"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGQR<A NAME="21398"></A></TD>
<TD ALIGN="LEFT">CUNGQR<A NAME="21399"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates all or part of the orthogonal/unitary matrix <B><I>Q</I></B>
from a <B><I>QR</I></B> factorization determined by SGEQRF<A NAME="21400"></A>/CGEQRF<A NAME="21401"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGRQ<A NAME="21402"></A></TD>
<TD ALIGN="LEFT">CUNGRQ<A NAME="21403"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates all or part of the orthogonal/unitary matrix <B><I>Q</I></B>
from an <B><I>RQ</I></B> factorization determined by SGERQF<A NAME="21404"></A>/CGERQF<A NAME="21405"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORGTR<A NAME="21406"></A></TD>
<TD ALIGN="LEFT">CUNGTR<A NAME="21407"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Generates the orthogonal/unitary transformation matrix
from a reduction to tridiagonal form determined by SSYTRD<A NAME="21408"></A>/CHETRD<A NAME="21409"></A>.</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SORMBR<A NAME="21422"></A></TD>
<TD ALIGN="LEFT">CUNMBR<A NAME="21423"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by one of the orthogonal/unitary transformation
matrices
from a reduction to bidiagonal form determined by SGEBRD<A NAME="21424"></A>/CGEBRD<A NAME="21425"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMHR<A NAME="21426"></A></TD>
<TD ALIGN="LEFT">CUNMHR<A NAME="21427"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary transformation matrix
from a reduction to Hessenberg form determined by SGEHRD<A NAME="21428"></A>/CGEHRD<A NAME="21429"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMLQ<A NAME="21430"></A></TD>
<TD ALIGN="LEFT">CUNMLQ<A NAME="21431"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary matrix
from an <B><I>LQ</I></B> factorization determined by SGELQF<A NAME="21432"></A>/CGELQF<A NAME="21433"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMQL<A NAME="21434"></A></TD>
<TD ALIGN="LEFT">CUNMQL<A NAME="21435"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary matrix
from a <B><I>QL</I></B> factorization determined by SGEQLF<A NAME="21436"></A>/CGEQLF<A NAME="21437"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMQR<A NAME="21438"></A></TD>
<TD ALIGN="LEFT">CUNMQR<A NAME="21439"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary matrix
from a <B><I>QR</I></B> factorization determined by SGEQRF<A NAME="21440"></A>/CGEQRF<A NAME="21441"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMRQ<A NAME="21442"></A></TD>
<TD ALIGN="LEFT">CUNMRQ<A NAME="21443"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary matrix
from an <B><I>RQ</I></B> factorization determined by SGERQF<A NAME="21444"></A>/CGERQF<A NAME="21445"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMRZ<A NAME="21446"></A></TD>
<TD ALIGN="LEFT">CUNMRZ<A NAME="21447"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary matrix
from an <B><I>RZ</I></B> factorization determined by STZRZF<A NAME="21448"></A>/CTZRZF<A NAME="21449"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SORMTR<A NAME="21450"></A></TD>
<TD ALIGN="LEFT">CUNMTR<A NAME="21451"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Multiplies a general matrix by the orthogonal/unitary transformation matrix
from a reduction to tridiagonal form determined by SSYTRD<A NAME="21452"></A>/CHETRD<A NAME="21453"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBCON<A NAME="21454"></A></TD>
<TD ALIGN="LEFT">CPBCON<A NAME="21455"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of
a symmetric/Hermitian positive definite band matrix,
using the Cholesky factorization computed by SPBTRF<A NAME="21456"></A>/CPBTRF<A NAME="21457"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBEQU<A NAME="21458"></A></TD>
<TD ALIGN="LEFT">CPBEQU<A NAME="21459"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes row and column scalings to equilibrate
a symmetric/Hermitian positive definite band matrix
and reduce its condition number.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBRFS<A NAME="21460"></A></TD>
<TD ALIGN="LEFT">CPBRFS<A NAME="21461"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to
a symmetric/Hermitian positive definite banded system of linear equations
<B><I>A X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBSTF<A NAME="21462"></A></TD>
<TD ALIGN="LEFT">CPBSTF<A NAME="21463"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes a split Cholesky factorization of a real/complex
symmetric/Hermitian positive definite band matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPBSV<A NAME="21464"></A></B></TD>
<TD ALIGN="LEFT"><B> CPBSV<A NAME="21465"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite banded system of linear
equations <B><I>A X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPBSVX<A NAME="21466"></A></B></TD>
<TD ALIGN="LEFT"><B> CPBSVX<A NAME="21467"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite banded system of linear
equations
<B><I>A X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBTRF<A NAME="21468"></A></TD>
<TD ALIGN="LEFT">CPBTRF<A NAME="21469"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the Cholesky factorization of
a symmetric/Hermitian positive definite band matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBTRS<A NAME="21470"></A></TD>
<TD ALIGN="LEFT">CPBTRS<A NAME="21471"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite banded system of linear
equations <B><I>A X</I>=<I>B</I></B>,
using the Cholesky factorization computed by SPBTRF<A NAME="21472"></A>/CPBTRF<A NAME="21473"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPOCON<A NAME="21474"></A></TD>
<TD ALIGN="LEFT">CPOCON<A NAME="21475"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of
a symmetric/Hermitian positive definite matrix,
using the Cholesky factorization computed by SPOTRF<A NAME="21476"></A>/CPOTRF<A NAME="21477"></A>.</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SPOEQU<A NAME="21491"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPOEQU<A NAME="21492"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes row and column scalings to equilibrate
a symmetric/Hermitian positive definite matrix
and reduce its condition number.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPORFS<A NAME="21493"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPORFS<A NAME="21494"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to
a symmetric/Hermitian positive definite system of linear equations <B><I>A X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPOSV<A NAME="21495"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CPOSV<A NAME="21496"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite system of linear equations
<B><I>A X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPOSVX<A NAME="21497"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CPOSVX<A NAME="21498"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite system of linear equations
<B><I>A X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPOTRF<A NAME="21499"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPOTRF<A NAME="21500"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the Cholesky factorization of
a symmetric/Hermitian positive definite matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPOTRI<A NAME="21501"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPOTRI<A NAME="21502"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of
a symmetric/Hermitian positive definite matrix,
using the Cholesky factorization computed by SPOTRF<A NAME="21503"></A>/CPOTRF<A NAME="21504"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPOTRS<A NAME="21505"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPOTRS<A NAME="21506"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite system of linear equations
<B><I>A X</I>=<I>B</I></B>,
using the Cholesky factorization computed by SPOTRF<A NAME="21507"></A>/CPOTRF<A NAME="21508"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPCON<A NAME="21509"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPPCON<A NAME="21510"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of
a symmetric/Hermitian positive definite matrix in packed storage,
using the Cholesky factorization computed by SPPTRF<A NAME="21511"></A>/CPPTRF<A NAME="21512"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPEQU<A NAME="21513"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPPEQU<A NAME="21514"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes row and column scalings to equilibrate
a symmetric/Hermitian positive definite matrix in packed storage
and reduce its condition number.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPRFS<A NAME="21515"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPPRFS<A NAME="21516"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to
a symmetric/Hermitian positive definite system of linear equations <B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPPSV<A NAME="21517"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CPPSV<A NAME="21518"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite system of linear equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPPSVX<A NAME="21519"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CPPSVX<A NAME="21520"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite system of linear equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPTRF<A NAME="21521"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPPTRF<A NAME="21522"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the Cholesky factorization of
a symmetric/Hermitian positive definite matrix in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPTRI<A NAME="21523"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPPTRI<A NAME="21524"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of
a symmetric/Hermitian positive definite matrix in packed storage,
using the Cholesky factorization computed by SPPTRF<A NAME="21525"></A>/CPPTRF<A NAME="21526"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPTRS<A NAME="21527"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPPTRS<A NAME="21528"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite system of linear equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage,
using the Cholesky factorization computed by SPPTRF<A NAME="21529"></A>/CPPTRF<A NAME="21530"></A>.</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SPTCON<A NAME="21544"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPTCON<A NAME="21545"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the reciprocal of the condition number of
a symmetric/Hermitian positive definite tridiagonal matrix,
using the <B><I>LDL</I><SUP><I>H</I></SUP></B> factorization computed by SPTTRF<A NAME="21546"></A>/CPTTRF<A NAME="21547"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPTEQR<A NAME="21548"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPTEQR<A NAME="21549"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and eigenvectors of
a real symmetric positive definite tridiagonal matrix,
by computing the SVD of its bidiagonal Cholesky factor.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPTRFS<A NAME="21550"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPTRFS<A NAME="21551"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to
a symmetric/Hermitian positive definite tridiagonal system of linear equations
<B><I>A X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPTSV<A NAME="21552"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CPTSV<A NAME="21553"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite tridiagonal system of linear
equations
<B><I>A X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SPTSVX<A NAME="21554"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CPTSVX<A NAME="21555"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite tridiagonal system of linear
equations
<B><I>A X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPTTRF<A NAME="21556"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPTTRF<A NAME="21557"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the <B><I>LDL</I><SUP><I>H</I></SUP></B> factorization of
a symmetric/Hermitian positive definite tridiagonal matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SPTTRS<A NAME="21558"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CPTTRS<A NAME="21559"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a symmetric/Hermitian positive definite tridiagonal system of linear
equations,
using the <B><I>LDL</I><SUP><I>H</I></SUP></B> factorization computed by SPTTRF<A NAME="21560"></A>/CPTTRF<A NAME="21561"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSBEV<A NAME="21562"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHBEV<A NAME="21563"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian band matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSBEVD<A NAME="21564"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHBEVD<A NAME="21565"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian band matrix. If eigenvectors are desired, it uses
a divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSBEVX<A NAME="21566"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHBEVX<A NAME="21567"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and eigenvectors of
a symmetric/Hermitian band matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSBGST<A NAME="21568"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CHBGST<A NAME="21569"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a real/complex symmetric-/Hermitian-definite banded
generalized eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">
to standard form,
where <B><I>B</I></B> has been factorized by SPBSTF/CPBSTF (Crawford's algorithm).</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSBGV<A NAME="21570"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHBGV<A NAME="21571"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all of the eigenvalues, and optionally, the eigenvectors
of a real/complex generalized symmetric-/Hermitian-definite banded
eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSBGVD<A NAME="21572"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHBGVD<A NAME="21573"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues, and optionally, the eigenvectors
of a real/complex generalized symmetric-/Hermitian-definite banded
eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">.
If eigenvectors are desired,
it uses a divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSBGVX<A NAME="21574"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHBGVX<A NAME="21575"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues, and optionally, the eigenvectors
of a real/complex generalized symmetric-/Hermitian-definite banded
eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSBTRD<A NAME="21576"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CHBTRD<A NAME="21577"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a symmetric/Hermitian band matrix
to real symmetric tridiagonal form
by an orthogonal/unitary similarity transformation.</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SSPCON<A NAME="21591"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSPCON<A NAME="21592"></A> CHPCON<A NAME="21593"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of
a real symmetric/complex symmetric/complex Hermitian indefinite matrix in
packed storage,
using the factorization computed by SSPTRF<A NAME="21594"></A>/CSPTRF<A NAME="21595"></A>/CHPTRF<A NAME="21596"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPEV<A NAME="21597"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHPEV<A NAME="21598"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian matrix in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPEVD<A NAME="21599"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHPEVD<A NAME="21600"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian matrix in packed storage. If eigenvectors are
desired, it uses a divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPEVX<A NAME="21601"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHPEVX<A NAME="21602"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and eigenvectors of
a symmetric/Hermitian matrix in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPGST<A NAME="21603"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CHPGST<A NAME="21604"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a symmetric/Hermitian definite generalized eigenproblem
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">,
to standard form,
where <B><I>A</I></B> and <B><I>B</I></B> are held in packed storage,
and <B><I>B</I></B> has been factorized by SPPTRF<A NAME="21605"></A>/CPPTRF<A NAME="21606"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPGV<A NAME="21607"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHPGV<A NAME="21608"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and optionally, the eigenvectors of
a generalized symmetric/Hermitian definite generalized eigenproblem,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">,
where <B><I>A</I></B> and <B><I>B</I></B> are in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPGVD<A NAME="21609"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHPGVD<A NAME="21610"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues, and optionally, the eigenvectors of
a generalized symmetric/Hermitian definite generalized eigenproblem,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">,
where <B><I>A</I></B> and <B><I>B</I></B> are in packed storage. If eigenvectors are
desired, it uses a divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPGVX<A NAME="21611"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHPGVX<A NAME="21612"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues, and optionally, the eigenvectors of
a generalized symmetric/Hermitian definite generalized eigenproblem,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">,
where <B><I>A</I></B> and <B><I>B</I></B> are in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPRFS<A NAME="21613"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSPRFS<A NAME="21614"></A> CHPRFS<A NAME="21615"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to
a real symmetric/complex symmetric/complex Hermitian indefinite system of linear
equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPSV<A NAME="21616"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CSPSV<A NAME="21617"></A></B> <B> CHPSV<A NAME="21618"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a real symmetric/complex symmetric/complex Hermitian indefinite system
of linear equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSPSVX<A NAME="21619"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CSPSVX<A NAME="21620"></A></B> <B> CHPSVX<A NAME="21621"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a real symmetric/complex symmetric/complex Hermitian indefinite system
of linear equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPTRD<A NAME="21622"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CHPTRD<A NAME="21623"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a symmetric/Hermitian matrix in packed storage
to real symmetric tridiagonal form
by an orthogonal/unitary similarity transformation.</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">SSPTRF<A NAME="21637"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSPTRF<A NAME="21638"></A> CHPTRF<A NAME="21639"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the factorization of
a real symmetric/complex symmetric/complex Hermitian indefinite matrix in
packed storage,
using the diagonal pivoting<A NAME="21640"></A> method.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPTRI<A NAME="21641"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSPTRI<A NAME="21642"></A> CHPTRI<A NAME="21643"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of
a real symmetric/complex symmetric/complex Hermitian indefinite matrix in
packed storage,
using the factorization computed by SSPTRF<A NAME="21644"></A>/CSPTRF<A NAME="21645"></A>/CHPTRF<A NAME="21646"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPTRS<A NAME="21647"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSPTRS<A NAME="21648"></A> CHPTRS<A NAME="21649"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a real symmetric/complex symmetric/complex Hermitian indefinite system
of linear equations
<B><I>A X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage,
using the factorization computed by SSPTRF<A NAME="21650"></A>/CSPTRF<A NAME="21651"></A>/CHPTRF<A NAME="21652"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSTEBZ<A NAME="21653"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues of a real symmetric tridiagonal matrix
by bisection.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSTEDC<A NAME="21654"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSTEDC<A NAME="21655"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSTEGR<A NAME="21656"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSTEGR<A NAME="21657"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix using the Relatively Robust
Representations.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSTEIN<A NAME="21658"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSTEIN<A NAME="21659"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvectors of a real symmetric tridiagonal matrix
by inverse iteration.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSTEQR<A NAME="21660"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSTEQR<A NAME="21661"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and eigenvectors of
a real symmetric tridiagonal matrix,
using the implicit <B><I>QL</I></B> or <B><I>QR</I></B> algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSTERF<A NAME="21662"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues of a real symmetric tridiagonal matrix,
using a root-free variant of the <B><I>QL</I></B> or <B><I>QR</I></B> algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSTEV<A NAME="21663"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSTEVD<A NAME="21664"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSTEVR<A NAME="21665"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix using the Relatively Robust
Representations.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSTEVX<A NAME="21666"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and eigenvectors of
a real symmetric tridiagonal matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYCON<A NAME="21667"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSYCON<A NAME="21668"></A> CHECON<A NAME="21669"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of
a real symmetric/complex symmetric/complex Hermitian indefinite matrix,
using the factorization computed by SSYTRF<A NAME="21670"></A>/CSYTRF<A NAME="21671"></A>/CHETRF<A NAME="21672"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYEV<A NAME="21673"></A> </B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEEV<A NAME="21674"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYEVD<A NAME="21675"></A> </B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEEVD<A NAME="21676"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.</TD>
</TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYEVR<A NAME="21690"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEEVR<A NAME="21691"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric/Hermitian matrix using the Relatively Robust
Representations.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYEVX<A NAME="21692"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEEVX<A NAME="21693"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues and, optionally, eigenvectors of
a symmetric/Hermitian matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYGST<A NAME="21694"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CHEGST<A NAME="21695"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a symmetric/Hermitian definite generalized eigenproblem
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">,
to standard form, where <B><I>B</I></B> has been factorized by SPOTRF<A NAME="21696"></A>/CPOTRF<A NAME="21697"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYGV<A NAME="21698"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEGV<A NAME="21699"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues, and optionally, the eigenvectors of
a generalized symmetric/Hermitian definite generalized eigenproblem,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYGVD<A NAME="21700"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEGVD<A NAME="21701"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes all eigenvalues, and optionally, the eigenvectors of
a generalized symmetric/Hermitian definite generalized eigenproblem,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">.
If eigenvectors
are desired, it uses a divide and conquer algorithm.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYGVX<A NAME="21702"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CHEGVX<A NAME="21703"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes selected eigenvalues, and optionally, the eigenvectors of
a generalized symmetric/Hermitian definite generalized eigenproblem,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">,
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">,
or <IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYRFS<A NAME="21704"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSYRFS<A NAME="21705"></A> CHERFS<A NAME="21706"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Improves the computed solution to
a real symmetric/complex symmetric/complex Hermitian indefinite system of linear
equations
<B><I>A X</I>=<I>B</I></B>,
and provides forward and backward error bounds for the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYSV<A NAME="21707"></A> </B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CSYSV<A NAME="21708"></A></B> <B> CHESV<A NAME="21709"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a real symmetric/complex symmetric/complex Hermitian indefinite system
of linear equations
<B><I>A X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT"><B> SSYSVX<A NAME="21710"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54><B> CSYSVX<A NAME="21711"></A></B> <B> CHESVX<A NAME="21712"></A></B></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a real symmetric/complex symmetric/complex Hermitian indefinite system
of linear equations
<B><I>A X</I>=<I>B</I></B>,
and provides an estimate of the condition number
and error bounds on the solution.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYTRD<A NAME="21713"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CHETRD<A NAME="21714"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reduces a symmetric/Hermitian matrix to
real symmetric tridiagonal form
by an orthogonal/unitary similarity transformation.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYTRF<A NAME="21715"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSYTRF<A NAME="21716"></A> CHETRF<A NAME="21717"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the factorization of
a real symmetric/complex symmetric/complex Hermitian indefinite matrix,
using the diagonal pivoting<A NAME="21718"></A> method.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYTRI<A NAME="21719"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSYTRI<A NAME="21720"></A> CHETRI<A NAME="21721"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of
a real symmetric/complex symmetric/complex Hermitian indefinite matrix,
using the factorization computed by SSYTRF<A NAME="21722"></A>/CSYTRF<A NAME="21723"></A>/CHETRF<A NAME="21724"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">SSYTRS<A NAME="21725"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CSYTRS<A NAME="21726"></A> CHETRS<A NAME="21727"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a real symmetric/complex symmetric/complex Hermitian indefinite system
of linear equations
<B><I>A X</I>=<I>B</I></B>,
using the factorization computed by SSPTRF<A NAME="21728"></A>/CSPTRF<A NAME="21729"></A>/CHPTRF<A NAME="21730"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">STBCON<A NAME="21731"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=54>CTBCON<A NAME="21732"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of a triangular band matrix,
in either the 1-norm or the infinity-norm.</TD>
</TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">STBRFS<A NAME="21745"></A></TD>
<TD ALIGN="LEFT">CTBRFS<A NAME="21746"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Provides forward and backward error bounds for the solution of
a triangular banded system of linear equations
<B><I>A X</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT">STBTRS<A NAME="21747"></A></TD>
<TD ALIGN="LEFT">CTBTRS<A NAME="21748"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a triangular banded system of linear equations
<B><I>A X</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT">STGEVC<A NAME="21749"></A></TD>
<TD ALIGN="LEFT">CTGEVC<A NAME="21750"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes some or all of the right and/or left generalized eigenvectors of a
pair of upper triangular matrices.</TD>
</TR>
<TR><TD ALIGN="LEFT">STGEXC<A NAME="21751"></A></TD>
<TD ALIGN="LEFT">CTGEXC<A NAME="21752"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reorders the generalized real-Schur/Schur decomposition of a matrix pair <B>(<I>A</I>,<I>B</I>)</B>
using an orthogonal/unitary equivalence transformation so that the
diagonal block of <B>(<I>A</I>,<I>B</I>)</B> with row index <B><I>IFST</I></B> is moved to row <B><I>ILST</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT">STGSEN<A NAME="21753"></A></TD>
<TD ALIGN="LEFT">CTGSEN<A NAME="21754"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reorders the generalized real-Schur/Schur decomposition of a matrix pair
<B>(<I>A</I>,<I>B</I>)</B>, computes the generalized eigenvalues of the reordered matrix
pair, and, optionally, computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces.</TD>
</TR>
<TR><TD ALIGN="LEFT">STGSJA<A NAME="21755"></A></TD>
<TD ALIGN="LEFT">CTGSJA<A NAME="21756"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the generalized singular value decomposition (GSVD) of a pair
of upper triangular (or trapezoidal) matrices, which may be obtained by
the preprocessing subroutine SGGSVP/CGGSVP<A NAME="21757"></A><A NAME="21758"></A>.</TD>
</TR>
<TR><TD ALIGN="LEFT">STGSNA<A NAME="21759"></A></TD>
<TD ALIGN="LEFT">CTGSNA<A NAME="21760"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair <B>(<I>A</I>,<I>B</I>)</B> in
generalized real-Schur/Schur canonical form</TD>
</TR>
<TR><TD ALIGN="LEFT">STGSYL<A NAME="21761"></A></TD>
<TD ALIGN="LEFT">CTGSYL<A NAME="21762"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves the generalized Sylvester equation</TD>
</TR>
<TR><TD ALIGN="LEFT">STPCON<A NAME="21763"></A></TD>
<TD ALIGN="LEFT">CTPCON<A NAME="21764"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of a triangular matrix
in packed storage,
in either the 1-norm or the infinity-norm.</TD>
</TR>
<TR><TD ALIGN="LEFT">STPRFS<A NAME="21765"></A></TD>
<TD ALIGN="LEFT">CTPRFS<A NAME="21766"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Provides forward and backward error bounds for the solution of
a triangular system of linear equations
<B><I>A X</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT">STPTRI<A NAME="21767"></A></TD>
<TD ALIGN="LEFT">CTPTRI<A NAME="21768"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of a triangular matrix in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT">STPTRS<A NAME="21769"></A></TD>
<TD ALIGN="LEFT">CTPTRS<A NAME="21770"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a triangular system of linear equations
<B><I>A X</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>,
where <B><I>A</I></B> is held in packed storage.</TD>
</TR>
<TR><TD ALIGN="LEFT">STRCON<A NAME="21771"></A></TD>
<TD ALIGN="LEFT">CTRCON<A NAME="21772"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal of the condition number of a triangular matrix,
in either the 1-norm or the infinity-norm.</TD>
</TR>
<TR><TD ALIGN="LEFT">STREVC<A NAME="21773"></A></TD>
<TD ALIGN="LEFT">CTREVC<A NAME="21774"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes some or all of the right and/or left eigenvectors of
an upper quasi-triangular/triangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">STREXC<A NAME="21775"></A></TD>
<TD ALIGN="LEFT">CTREXC<A NAME="21776"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reorders the Schur factorization of a matrix
by an orthogonal/unitary similarity transformation.</TD>
</TR>
<TR><TD ALIGN="LEFT">STRRFS<A NAME="21777"></A></TD>
<TD ALIGN="LEFT">CTRRFS<A NAME="21778"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Provides forward and backward error bounds for the solution of
a triangular system of linear equations
<B><I>A X</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>.</TD>
</TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=2>Routine</TD>
<TD ALIGN="CENTER" COLSPAN=1>Description</TD>
</TR>
<TR><TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324> </TD>
</TR>
<TR><TD ALIGN="LEFT">STRSEN<A NAME="21791"></A></TD>
<TD ALIGN="LEFT">CTRSEN<A NAME="21792"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Reorders the Schur factorization of a matrix
in order to find an orthonormal basis of a right invariant subspace
corresponding to selected eigenvalues,
and returns reciprocal condition numbers (sensitivities)
of the average of the cluster of eigenvalues and of the invariant subspace.</TD>
</TR>
<TR><TD ALIGN="LEFT">STRSNA<A NAME="21793"></A></TD>
<TD ALIGN="LEFT">CTRSNA<A NAME="21794"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Estimates the reciprocal condition numbers (sensitivities) of
selected eigenvalues and eigenvectors
of an upper quasi-triangular/triangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">STRSYL<A NAME="21795"></A></TD>
<TD ALIGN="LEFT">CTRSYL<A NAME="21796"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves the Sylvester matrix equation <IMG
WIDTH="122" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img156.png"
ALT="$AX \pm XB=C$">
where <B><I>A</I></B> and <B><I>B</I></B> are upper quasi-triangular/triangular,
and may be transposed.</TD>
</TR>
<TR><TD ALIGN="LEFT">STRTRI<A NAME="21797"></A></TD>
<TD ALIGN="LEFT">CTRTRI<A NAME="21798"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes the inverse of a triangular matrix.</TD>
</TR>
<TR><TD ALIGN="LEFT">STRTRS<A NAME="21799"></A></TD>
<TD ALIGN="LEFT">CTRTRS<A NAME="21800"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Solves a triangular system of linear equations
<B><I>A X</I>=<I>B</I></B>, <B><I>A</I><SUP><I>T</I></SUP> <I>X</I>=<I>B</I></B> or <B><I>A</I><SUP><I>H</I></SUP> <I>X</I>=<I>B</I></B>.</TD>
</TR>
<TR><TD ALIGN="LEFT">STZRZF<A NAME="21801"></A></TD>
<TD ALIGN="LEFT">CTZRZF<A NAME="21802"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=324>Computes an <B><I>RZ</I></B> factorization of an upper trapezoidal matrix (blocked
algorithm).</TD>
</TR>
</TABLE>
</DIV>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html6214"
HREF="node143.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6208"
HREF="node141.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6204"
HREF="node141.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6210"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6212"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6215"
HREF="node143.html">Index of Auxiliary Routines</A>
<B> Up:</B> <A NAME="tex2html6209"
HREF="node141.html">Index of Driver and</A>
<B> Previous:</B> <A NAME="tex2html6205"
HREF="node141.html">Index of Driver and</A>
  <B> <A NAME="tex2html6211"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6213"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|