File: node147.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (1035 lines) | stat: -rw-r--r-- 47,670 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Notes</TITLE>
<META NAME="description" CONTENT="Notes">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node146.html">
<LINK REL="up" HREF="node146.html">
<LINK REL="next" HREF="node148.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html6282"
 HREF="node148.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html6276"
 HREF="node146.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html6272"
 HREF="node146.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html6278"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html6280"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html6283"
 HREF="node148.html">LAPACK Working Notes</A>
<B> Up:</B> <A NAME="tex2html6277"
 HREF="node146.html">Converting from LINPACK or</A>
<B> Previous:</B> <A NAME="tex2html6273"
 HREF="node146.html">Converting from LINPACK or</A>
 &nbsp <B>  <A NAME="tex2html6279"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html6281"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H1><A NAME="SECTION031110000000000000000">
Notes</A>
</H1>

<P>
<DL COMPACT>
<DT>1.
<DD>The appendix consists mainly of indexes 
giving the nearest LAPACK equivalents of LINPACK and EISPACK routines.
These indexes should not be followed blindly or rigidly, 
especially when two or more
LINPACK or EISPACK routines are being used together: in many such cases
one of the LAPACK driver routines may be a suitable replacement.
<P>
<DT>2.
<DD>When two or more LAPACK routines are given in a single entry, these
routines must be combined to achieve the equivalent function.

<P>
<DT>3.
<DD>For LINPACK, an index is given for equivalents of the real LINPACK
routines; these equivalences apply also to the corresponding complex routines.
A separate table is included for equivalences of complex Hermitian routines.
For EISPACK, an index is given for all real and complex routines,
since there is no direct 1-to-1 correspondence between real and complex
routines in EISPACK.

<P>
<DT>4.
<DD>A few of the less commonly used routines in LINPACK and EISPACK have no
equivalents in Release 1.0 of LAPACK; equivalents for some of these (but not 
all) are planned for a future release.

<P>
<DT>5.
<DD>For some EISPACK routines, there are LAPACK routines providing similar
functionality, but using a significantly different method, or LAPACK routines
which provide only part of the functionality; such routines are marked by
a <IMG
 WIDTH="12" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img1009.png"
 ALT="$\dag $">.
For example, the EISPACK routine ELMHES uses non-orthogonal
transformations, whereas the nearest equivalent LAPACK routine, SGEHRD, uses
orthogonal transformations.

<P>
<DT>6.
<DD>In some cases the LAPACK equivalents require matrices to be stored
in a different storage scheme. For example:

<P>

<UL><LI>EISPACK routines BANDR<A NAME="22126"></A>, BANDV<A NAME="22127"></A>,
BQR<A NAME="22128"></A> and the driver routine RSB<A NAME="22129"></A>
require the lower triangle of
a symmetric band matrix to be stored in
a different storage scheme to that used in LAPACK, which is illustrated in
subsection&nbsp;<A HREF="node124.html#subsecband">5.3.3</A>. The corresponding storage scheme used by the 
EISPACK routines is:

<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER">symmetric band matrix <B><I>A</I></B></TD>
<TD ALIGN="CENTER">EISPACK band storage</TD>
</TR>
<TR><TD ALIGN="CENTER">
<!-- MATH
 $\left( \begin{array}{ccccc}
a_{11} & a_{21} & a_{31} &              &              \\
a_{21} & a_{22}       & a_{32} & a_{42} &              \\
a_{31} & a_{32}       & a_{33}       & a_{43} & a_{53} \\
       & a_{42}       & a_{43}       & a_{44}       & a_{54} \\
       &              & a_{53}       & a_{54}       & a_{55}
\end{array} \right)$
 -->
<IMG
 WIDTH="229" HEIGHT="125" ALIGN="MIDDLE" BORDER="0"
 SRC="img1010.png"
 ALT="$
\left( \begin{array}{ccccc}
a_{11} &amp; a_{21} &amp; a_{31} &amp; &amp; \\
a_{21} &amp; a_{22} &amp;...
...a_{43} &amp; a_{44} &amp; a_{54} \\
&amp; &amp; a_{53} &amp; a_{54} &amp; a_{55}
\end{array} \right)
$"></TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\begin{array}{ccccc}
 \ast  &  \ast  & a_{11} \\
 \ast  & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} \\
a_{42} & a_{43} & a_{44} \\
a_{53} & a_{54} & a_{55} 
\end{array}$
 -->
<IMG
 WIDTH="123" HEIGHT="125" ALIGN="MIDDLE" BORDER="0"
 SRC="img1011.png"
 ALT="$
\begin{array}{ccccc}
\ast &amp; \ast &amp; a_{11} \\
\ast &amp; a_{21} &amp; a_{22} \\
a_{...
...&amp; a_{33} \\
a_{42} &amp; a_{43} &amp; a_{44} \\
a_{53} &amp; a_{54} &amp; a_{55}
\end{array}$"></TD>
</TR>
</TABLE>
</DIV>

<P>

<LI>EISPACK routines TRED1<A NAME="22173"></A>, TRED2<A NAME="22174"></A>,
TRED3<A NAME="22175"></A>, HTRID3<A NAME="22176"></A>,
HTRIDI<A NAME="22177"></A>, TQL1<A NAME="22178"></A>,
TQL2<A NAME="22179"></A>, IMTQL1<A NAME="22180"></A>,
IMTQL2<A NAME="22181"></A>, RATQR<A NAME="22182"></A>,
TQLRAT<A NAME="22183"></A> and the driver routine RST<A NAME="22184"></A>
store the off-diagonal elements of a symmetric tridiagonal
matrix in elements <B>2:<I>n</I></B> of the array E, whereas LAPACK routines use
elements <B>1:<I>n</I>-1</B>.

<P>

</UL>

<P>
<DT>7.
<DD>The EISPACK and LINPACK routines for the singular value decomposition 
return the matrix of right singular vectors, <B><I>V</I></B>, whereas the corresponding 
LAPACK routines return the transposed matrix <B><I>V</I><SUP><I>T</I></SUP></B>.

<P>
<DT>8.
<DD>In general, the argument lists of the
LAPACK routines are different from those of 
the corresponding EISPACK and LINPACK
routines, and the workspace requirements are often different.

<P>
</DL>

<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of LINPACK routines for real matrices</TD>
</TR>
<TR><TD ALIGN="LEFT">LINPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of LINPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHDC<A NAME="22198"></A><A NAME="22199"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization with diagonal pivoting option</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHDD<A NAME="22200"></A><A NAME="22201"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Rank-1 downdate of a Cholesky factorization or the triangular factor 
of a <B><I>QR</I></B> factorization</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHEX<A NAME="22202"></A><A NAME="22203"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Modifies a Cholesky factorization under permutations of the original
matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHUD<A NAME="22204"></A><A NAME="22205"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Rank-1 update of a Cholesky factorization or the triangular factor
of a <B><I>QR</I></B> factorization</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBCO<A NAME="22206"></A><A NAME="22207"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANGB SGBTRF<A NAME="22208"></A><A NAME="22209"></A> SGBCON<A NAME="22210"></A><A NAME="22211"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization and condition estimation of a general band 
matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBDI<A NAME="22212"></A><A NAME="22213"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant of a general band matrix, after factorization by SGBCO<A NAME="22214"></A> or SGBFA<A NAME="22215"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGBFA<A NAME="22216"></A><A NAME="22217"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGBTRF<A NAME="22218"></A><A NAME="22219"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization of a general band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBSL<A NAME="22220"></A><A NAME="22221"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGBTRS<A NAME="22222"></A><A NAME="22223"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a general band system of linear equations, after factorization 
by SGBCO<A NAME="22224"></A> or SGBFA<A NAME="22225"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGECO<A NAME="22226"></A><A NAME="22227"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANGE SGETRF<A NAME="22228"></A><A NAME="22229"></A> SGECON<A NAME="22230"></A><A NAME="22231"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization and condition estimation of a general matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEDI<A NAME="22232"></A><A NAME="22233"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGETRI<A NAME="22234"></A><A NAME="22235"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a general matrix, after factorization by
SGECO<A NAME="22236"></A> or SGEFA<A NAME="22237"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGEFA<A NAME="22238"></A><A NAME="22239"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGETRF<A NAME="22240"></A><A NAME="22241"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization of a general matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGESL<A NAME="22242"></A><A NAME="22243"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGETRS<A NAME="22244"></A><A NAME="22245"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a general system of linear equations, after factorization by
SGECO<A NAME="22246"></A> or SGEFA<A NAME="22247"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGTSL<A NAME="22248"></A><A NAME="22249"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGTSV<A NAME="22250"></A><A NAME="22251"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a general tridiagonal system of linear equations</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBCO<A NAME="22252"></A><A NAME="22253"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANSB SPBTRF<A NAME="22254"></A><A NAME="22255"></A> SPBCON<A NAME="22256"></A><A NAME="22257"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization and condition estimation
of a symmetric positive definite band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBDI<A NAME="22258"></A><A NAME="22259"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant of a symmetric positive definite band matrix, after
factorization by SPBCO<A NAME="22260"></A> or SPBFA<A NAME="22261"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPBFA<A NAME="22262"></A><A NAME="22263"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPBTRF<A NAME="22264"></A><A NAME="22265"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization of a symmetric positive definite band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBSL<A NAME="22266"></A><A NAME="22267"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPBTRS<A NAME="22268"></A><A NAME="22269"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite band system of linear equations,
after factorization by SPBCO<A NAME="22270"></A> or SPBFA<A NAME="22271"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPOCO<A NAME="22272"></A><A NAME="22273"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANSY SPOTRF<A NAME="22274"></A><A NAME="22275"></A> SPOCON<A NAME="22276"></A><A NAME="22277"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization and condition estimation
of a symmetric positive definite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPODI<A NAME="22278"></A><A NAME="22279"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPOTRI<A NAME="22280"></A><A NAME="22281"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a symmetric positive definite matrix, after
factorization by SPOCO<A NAME="22282"></A> or SPOFA<A NAME="22283"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPOFA<A NAME="22284"></A><A NAME="22285"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPOTRF<A NAME="22286"></A><A NAME="22287"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization of a symmetric positive definite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPOSL<A NAME="22288"></A><A NAME="22289"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPOTRS<A NAME="22290"></A><A NAME="22291"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite system of linear equations,
after factorization by SPOCO<A NAME="22292"></A> or SPOFA<A NAME="22293"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPPCO<A NAME="22294"></A><A NAME="22295"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANSY SPPTRF<A NAME="22296"></A><A NAME="22297"></A> SPPCON<A NAME="22298"></A><A NAME="22299"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization and condition estimation
of a symmetric positive definite matrix (packed storage)</TD>
</TR>
</TABLE>
</DIV>

<P>
<TABLE  WIDTH="100%">
<TR><TD>
<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of LINPACK routines for real matrices
(continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">LINPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of LINPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPDI<A NAME="22316"></A><A NAME="22317"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPPTRI<A NAME="22318"></A><A NAME="22319"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a symmetric positive definite matrix, after
factorization by SPPCO<A NAME="22320"></A><A NAME="22321"></A> or SPPFA<A NAME="22322"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPFA<A NAME="22323"></A><A NAME="22324"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPPTRF<A NAME="22325"></A><A NAME="22326"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization of a symmetric positive definite matrix 
(packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPSL<A NAME="22327"></A><A NAME="22328"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPPTRS<A NAME="22329"></A><A NAME="22330"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite system of linear equations,
after factorization by SPPCO<A NAME="22331"></A> or SPPFA<A NAME="22332"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SPTSL<A NAME="22333"></A><A NAME="22334"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPTSV<A NAME="22335"></A><A NAME="22336"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite tridiagonal system of linear equations</TD>
</TR>
<TR><TD ALIGN="LEFT">SQRDC<A NAME="22337"></A><A NAME="22338"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEQPF<A NAME="22339"></A><A NAME="22340"></A> or SGEQRF<A NAME="22342"></A><A NAME="22343"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>QR</I></B> factorization with optional column pivoting</TD>
</TR>
<TR><TD ALIGN="LEFT">SQRSL<A NAME="22344"></A><A NAME="22345"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORMQR<A NAME="22346"></A><A NAME="22347"></A> STRSV<A NAME="tex2html3354"
HREF="#footmp22348"><SUP>1</SUP></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves linear least squares problems after factorization by SQRDC<A NAME="22349"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SSICO<A NAME="22350"></A><A NAME="22351"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SLANSY SSYTRF<A NAME="22352"></A><A NAME="22353"></A> SSYCON<A NAME="22354"></A><A NAME="22355"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization and condition estimation
of a symmetric indefinite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SSIDI<A NAME="22356"></A><A NAME="22357"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSYTRI<A NAME="22358"></A><A NAME="22359"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant, inertia and inverse of a symmetric indefinite matrix, after
factorization by SSICO<A NAME="22360"></A> or SSIFA<A NAME="22361"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SSIFA<A NAME="22362"></A><A NAME="22363"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSYTRF<A NAME="22364"></A><A NAME="22365"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization of a symmetric indefinite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SSISL<A NAME="22366"></A><A NAME="22367"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSYTRS<A NAME="22368"></A><A NAME="22369"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric indefinite system of linear equations,
after factorization by SSICO<A NAME="22370"></A> or SSIFA<A NAME="22371"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SSPCO<A NAME="22372"></A><A NAME="22373"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SLANSP SSPTRF<A NAME="22374"></A><A NAME="22375"></A> SSPCON<A NAME="22376"></A><A NAME="22377"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization and condition estimation
of a symmetric indefinite matrix (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPDI<A NAME="22378"></A><A NAME="22379"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSPTRI<A NAME="22380"></A><A NAME="22381"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant, inertia and inverse of a symmetric indefinite matrix, after
factorization by SSPCO<A NAME="22382"></A> or SSPFA<A NAME="22383"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPFA<A NAME="22384"></A><A NAME="22385"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSPTRF<A NAME="22386"></A><A NAME="22387"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization of a symmetric indefinite matrix 
(packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPSL<A NAME="22388"></A><A NAME="22389"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSPTRS<A NAME="22390"></A><A NAME="22391"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric indefinite system of linear equations,
after factorization by SSPCO<A NAME="22392"></A> or SSPFA<A NAME="22393"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSVDC<A NAME="22394"></A><A NAME="22395"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGESVD<A NAME="22396"></A><A NAME="22397"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All or part of the singular value decomposition of a general matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">STRCO<A NAME="22398"></A><A NAME="22399"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRCON<A NAME="22400"></A><A NAME="22401"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Condition estimation of a triangular matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">STRDI<A NAME="22402"></A><A NAME="22403"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRTRI<A NAME="22404"></A><A NAME="22405"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a triangular matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">STRSL<A NAME="22406"></A><A NAME="22407"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRTRS<A NAME="22408"></A><A NAME="22409"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a triangular system of linear equations</TD>
</TR>
</TABLE>
</DIV></TD></TR>
</TABLE>

<P>
<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of LINPACK routines for complex Hermitian matrices</TD>
</TR>
<TR><TD ALIGN="LEFT">LINPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of LINPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">CHICO<A NAME="22425"></A><A NAME="22426"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHECON<A NAME="22427"></A><A NAME="22428"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix by elimination with symmetric pivoting and
estimates the condition number of the matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CHIDI<A NAME="22429"></A><A NAME="22430"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRI<A NAME="22431"></A><A NAME="22432"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Computes the determinant, inertia and inverse of a complex Hermitian matrix
using the factors from CHIFA<A NAME="22433"></A><A NAME="22434"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CHIFA<A NAME="22435"></A><A NAME="22436"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRF<A NAME="22437"></A><A NAME="22438"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix by elimination with symmetric pivoting</TD>
</TR>
<TR><TD ALIGN="LEFT">CHISL<A NAME="22439"></A><A NAME="22440"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRS<A NAME="22441"></A><A NAME="22442"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves the complex Hermitian system Ax=b using the factors computed by CHIFA<A NAME="22443"></A><A NAME="22444"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CHPCO<A NAME="22445"></A><A NAME="22446"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPCON<A NAME="22447"></A><A NAME="22448"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix stored in packed form by elimination with
symmetric pivoting and estimates the condition number of the matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CHPDI<A NAME="22449"></A><A NAME="22450"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRI<A NAME="22451"></A><A NAME="22452"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Computes the determinant, intertia and inverse of a complex Hermitian matrix
using the factors from CHPFA<A NAME="22453"></A><A NAME="22454"></A>,
where the matrix is stored in packed form</TD>
</TR>
<TR><TD ALIGN="LEFT">CHPFA<A NAME="22455"></A><A NAME="22456"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRF<A NAME="22457"></A><A NAME="22458"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix stored in packed form by elimination
with symmetric pivoting</TD>
</TR>
<TR><TD ALIGN="LEFT">CHPSL<A NAME="22459"></A><A NAME="22460"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRS<A NAME="22461"></A><A NAME="22462"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves the complex Hermitian system Ax=b using the factors computed by
CHPFA<A NAME="22463"></A><A NAME="22464"></A></TD>
</TR>
</TABLE>
</DIV>

<P>
<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">BAKVEC<A NAME="22479"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors after transformation by FIGI<A NAME="22480"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">BALANC<A NAME="22481"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEBAL<A NAME="22482"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Balance a real matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">BALBAK<A NAME="22483"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEBAK<A NAME="22484"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real matrix after balancing by BALANC</TD>
</TR>
<TR><TD ALIGN="LEFT">BANDR<A NAME="22485"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSBTRD<A NAME="22486"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real symmetric band matrix to tridiagonal form</TD>
</TR>
<TR><TD ALIGN="LEFT">BANDV<A NAME="22487"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSBEVX<A NAME="22488"></A> SGBSV<A NAME="22489"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a real band matrix by inverse iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">BISECT<A NAME="22490"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEBZ<A NAME="22491"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Eigenvalues in a specified interval of a real symmetric tridiagonal matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">BQR<A NAME="22492"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSBEVX<A NAME="22493"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Some eigenvalues of a real symmetric band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CBABK2<A NAME="22494"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEBAK<A NAME="22495"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex matrix after balancing by CBAL<A NAME="22496"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CBAL<A NAME="22497"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEBAL<A NAME="22498"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Balance a complex matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CG<A NAME="22499"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEEV<A NAME="22500"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a complex general matrix 
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">CH<A NAME="22501"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHEEV<A NAME="22502"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a complex Hermitian matrix 
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">CINVIT<A NAME="22503"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHSEIN<A NAME="22504"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a complex upper Hessenberg matrix by inverse 
iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">COMBAK<A NAME="22505"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNMHR<A NAME="22506"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex matrix after reduction by COMHES<A NAME="22507"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">COMHES<A NAME="22508"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEHRD<A NAME="22509"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex matrix to upper Hessenberg form by a
non-unitary transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">COMLR<A NAME="22510"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHSEQR<A NAME="22511"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a complex upper Hessenberg matrix, by
the <B><I>LR</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">COMLR2<A NAME="22512"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNGHR<A NAME="22513"></A> CHSEQR<A NAME="22514"></A> CTREVC<A NAME="22515"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a complex matrix 
by the <B><I>LR</I></B> algorithm, after reduction by COMHES<A NAME="22516"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">COMQR<A NAME="22517"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHSEQR<A NAME="22518"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a complex upper Hessenberg matrix by the
<B><I>QR</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">COMQR2<A NAME="22519"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNGHR<A NAME="22520"></A> CHSEQR<A NAME="22521"></A> CTREVC<A NAME="22522"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a complex matrix by the <B><I>QR</I></B> algorithm,
after reduction by CORTH<A NAME="22523"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CORTB<A NAME="22524"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNMHR<A NAME="22525"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex matrix, after reduction by CORTH<A NAME="22526"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CORTH<A NAME="22527"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEHRD<A NAME="22528"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex matrix to upper Hessenberg form by a unitary transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">ELMBAK<A NAME="22529"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORMHR<A NAME="22530"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real matrix after reduction by ELMHES<A NAME="22531"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">ELMHES<A NAME="22532"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEHRD<A NAME="22533"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real matrix to upper Hessenberg form by a
non-orthogonal transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">ELTRAN<A NAME="22534"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORGHR<A NAME="22535"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Generate transformation matrix used by ELMHES<A NAME="22536"></A></TD>
</TR>
</TABLE>
</DIV>

<P>
<TABLE  WIDTH="100%">
<TR><TD>
<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines (continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">FIGI<A NAME="22553"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Transform a nonsymmetric tridiagonal matrix of special form to a symmetric
matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">FIGI2<A NAME="22554"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>As FIGI, with generation of the transformation matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">HQR<A NAME="22555"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHSEQR<A NAME="22556"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a complex upper Hessenberg matrix by the
<B><I>QR</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">HQR2<A NAME="22557"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHSEQR<A NAME="22558"></A> STREVC<A NAME="22559"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a real upper Hessenberg matrix by the <B><I>QR</I></B> 
algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">HTRIB3<A NAME="22560"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUPMTR<A NAME="22561"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex Hermitian matrix after reduction
by HTRID3<A NAME="22562"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">HTRIBK<A NAME="22563"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNMTR<A NAME="22564"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex Hermitian matrix after reduction
by HTRIDI<A NAME="22565"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">HTRID3<A NAME="22566"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRD<A NAME="22567"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex Hermitian matrix to tridiagonal form (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">HTRIDI<A NAME="22568"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRD<A NAME="22569"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex Hermitian matrix to tridiagonal form</TD>
</TR>
<TR><TD ALIGN="LEFT">IMTQL1<A NAME="22570"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEQR<A NAME="22571"></A> or SSTERF<A NAME="22572"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a symmetric tridiagonal matrix, by the 
implicit <B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">IMTQL2<A NAME="22573"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEQR<A NAME="22574"></A> or SSTEDC<A NAME="22576"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a symmetric tridiagonal matrix, by the implicit
<B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">IMTQLV<A NAME="22577"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEQR<A NAME="22578"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>As IMTQL1<A NAME="22579"></A>, preserving the input matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">INVIT<A NAME="22580"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHSEIN<A NAME="22581"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a real upper Hessenberg matrix, by inverse 
iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">MINFIT<A NAME="22582"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGELSS<A NAME="22583"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Minimum norm solution of a linear least squares problem, using the singular
value decomposition</TD>
</TR>
<TR><TD ALIGN="LEFT">ORTBAK<A NAME="22584"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORMHR<A NAME="22585"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real matrix after reduction to upper 
Hessenberg form by ORTHES<A NAME="22586"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">ORTHES<A NAME="22587"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEHRD<A NAME="22588"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real matrix to upper Hessenberg form by an orthogonal 
transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">ORTRAN<A NAME="22589"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORGHR<A NAME="22590"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Generate orthogonal transformation matrix used by ORTHES</TD>
</TR>
<TR><TD ALIGN="LEFT">QZHES<A NAME="22591"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGGHRD<A NAME="22592"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real generalized eigenproblem 
<!-- MATH
 $A x = \lambda B x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img176.png"
 ALT="$Ax = \lambda Bx$">
to
a form in which <B><I>A</I></B> is upper Hessenberg and <B><I>B</I></B> is upper triangular</TD>
</TR>
<TR><TD ALIGN="LEFT">QZIT<A NAME="22593"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHGEQZ<A NAME="22594"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Generalized Schur factorization of a real generalized
eigenproblem,</TD>
</TR>
<TR><TD ALIGN="LEFT">QZVAL<A NAME="22595"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>after reduction by QZHES<A NAME="22596"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">QZVEC<A NAME="22597"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STGEVC<A NAME="22598"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvectors of a real generalized eigenproblem from generalized
Schur factorization</TD>
</TR>
<TR><TD ALIGN="LEFT">RATQR<A NAME="22599"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEBZ<A NAME="22600"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Extreme eigenvalues of a symmetric tridiagonal matrix using the rational QR 
algorithm with Newton corrections</TD>
</TR>
<TR><TD ALIGN="LEFT">REBAK<A NAME="22601"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRSM<A NAME="tex2html3545"
HREF="#footmp22602"><SUP>1</SUP></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a symmetric definite generalized eigenproblem

<!-- MATH
 $A x = \lambda B x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img176.png"
 ALT="$Ax = \lambda Bx$">
or 
<!-- MATH
 $A B x = \lambda x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img951.png"
 ALT="$ABx=\lambda x$">
after reduction by REDUC<A NAME="22603"></A> or REDUC2<A NAME="22604"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">REBAKB<A NAME="22605"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRMM<A NAME="tex2html3546"
HREF="#footmp22606"><SUP>2</SUP></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a symmetric definite generalized eigenproblem

<!-- MATH
 $B A x = \lambda x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img952.png"
 ALT="$BAx=\lambda x$">
after reduction by REDUC2<A NAME="22607"></A></TD>
</TR>
</TABLE>
</DIV></TD></TR>
</TABLE>

<P>
<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines (continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">REDUC<A NAME="22623"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGST<A NAME="22624"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce the symmetric definite generalized eigenproblem 
<!-- MATH
 $Ax = \lambda B x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img176.png"
 ALT="$Ax = \lambda Bx$">
to a standard symmetric eigenproblem</TD>
</TR>
<TR><TD ALIGN="LEFT">REDUC2<A NAME="22625"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGST<A NAME="22626"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce the symmetric definite generalized eigenproblem 
<!-- MATH
 $A B x = \lambda x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img951.png"
 ALT="$ABx=\lambda x$">
or 
<!-- MATH
 $B A x = \lambda x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img952.png"
 ALT="$BAx=\lambda x$">
to a standard symmetric eigenproblem</TD>
</TR>
<TR><TD ALIGN="LEFT">RG<A NAME="22627"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SGEEV<A NAME="22628"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real general matrix 
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RGG<A NAME="22629"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SGEGV<A NAME="22630"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors or a real generalized 
eigenproblem (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RS<A NAME="22631"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYEV<A NAME="22632"></A> or SSYEVD<A NAME="22633"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric matrix 
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSB<A NAME="22634"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSBEV<A NAME="22635"></A> or SSBEVD<A NAME="22637"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric band matrix 
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSG<A NAME="22638"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGV<A NAME="22639"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric definite
generalized eigenproblem 
<!-- MATH
 $A x = \lambda B x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img176.png"
 ALT="$Ax = \lambda Bx$">
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSGAB<A NAME="22640"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGV<A NAME="22641"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric definite
generalized eigenproblem 
<!-- MATH
 $A B x = \lambda x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img951.png"
 ALT="$ABx=\lambda x$">
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSGBA<A NAME="22642"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGV<A NAME="22643"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric definite
generalized eigenproblem 
<!-- MATH
 $B A x = \lambda x$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img952.png"
 ALT="$BAx=\lambda x$">
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSM<A NAME="22644"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYEVX<A NAME="22645"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvalues and optionally eigenvectors of a real symmetric matrix 
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSP<A NAME="22646"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSPEV<A NAME="22647"></A> or SSPEVD<A NAME="22648"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric matrix
(packed storage) (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RST<A NAME="22649"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEV<A NAME="22650"></A> or SSTEVD<A NAME="22651"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric tridiagonal
matrix (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RT<A NAME="22652"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>&nbsp;</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real tridiagonal matrix 
of special form (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">SVD<A NAME="22653"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SGESVD<A NAME="22654"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Singular value decomposition of a real matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">TINVIT<A NAME="22655"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEIN<A NAME="22656"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a symmetric tridiagonal matrix by inverse
iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">TQL1<A NAME="22657"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEQR<A NAME="22658"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag">
<BR>
or SSTERF<A NAME="22660"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a symmetric tridiagonal matrix by the explicit 
<B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">TQL2<A NAME="22661"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEQR<A NAME="22662"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag">
<BR>
or SSTEDC<A NAME="22664"></A><IMG
 WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img1012.png"
 ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a symmetric tridiagonal matrix by the explicit
<B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">TQLRAT<A NAME="22665"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTERF<A NAME="22666"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a symmetric tridiagonal matrix by a rational variant of
the <B><I>QL</I></B> algorithm</TD>
</TR>
</TABLE>
</DIV>

<P>
<DIV ALIGN="CENTER">

<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines (continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">TRBAK1<A NAME="22681"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SORMTR<A NAME="22682"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real symmetric matrix after reduction by
TRED1<A NAME="22683"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">TRBAK3<A NAME="22684"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SOPMTR<A NAME="22685"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real symmetric matrix after reduction by
TRED3<A NAME="22686"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">TRED1<A NAME="22687"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYTRD<A NAME="22688"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real symmetric matrix to tridiagonal form</TD>
</TR>
<TR><TD ALIGN="LEFT">TRED2<A NAME="22689"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYTRD<A NAME="22690"></A> SORGTR<A NAME="22691"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>As TRED1<A NAME="22692"></A>, but also generating the orthogonal transformation matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">TRED3<A NAME="22693"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSPTRD<A NAME="22694"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real symmetric matrix to tridiagonal form (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">TRIDIB<A NAME="22695"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEBZ<A NAME="22696"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Eigenvalues between specified indices of a symmetric tridiagonal matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">TSTURM<A NAME="22697"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEBZ<A NAME="22698"></A> SSTEIN<A NAME="22699"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Eigenvalues in a specified interval of a symmetric tridiagonal matrix,
and corresponding eigenvectors by inverse iteration</TD>
</TR>
</TABLE>
</DIV>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html6282"
 HREF="node148.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html6276"
 HREF="node146.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html6272"
 HREF="node146.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html6278"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html6280"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html6283"
 HREF="node148.html">LAPACK Working Notes</A>
<B> Up:</B> <A NAME="tex2html6277"
 HREF="node146.html">Converting from LINPACK or</A>
<B> Previous:</B> <A NAME="tex2html6273"
 HREF="node146.html">Converting from LINPACK or</A>
 &nbsp <B>  <A NAME="tex2html6279"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html6281"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>