1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Notes</TITLE>
<META NAME="description" CONTENT="Notes">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node146.html">
<LINK REL="up" HREF="node146.html">
<LINK REL="next" HREF="node148.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html6282"
HREF="node148.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6276"
HREF="node146.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6272"
HREF="node146.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6278"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6280"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6283"
HREF="node148.html">LAPACK Working Notes</A>
<B> Up:</B> <A NAME="tex2html6277"
HREF="node146.html">Converting from LINPACK or</A>
<B> Previous:</B> <A NAME="tex2html6273"
HREF="node146.html">Converting from LINPACK or</A>
  <B> <A NAME="tex2html6279"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6281"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION031110000000000000000">
Notes</A>
</H1>
<P>
<DL COMPACT>
<DT>1.
<DD>The appendix consists mainly of indexes
giving the nearest LAPACK equivalents of LINPACK and EISPACK routines.
These indexes should not be followed blindly or rigidly,
especially when two or more
LINPACK or EISPACK routines are being used together: in many such cases
one of the LAPACK driver routines may be a suitable replacement.
<P>
<DT>2.
<DD>When two or more LAPACK routines are given in a single entry, these
routines must be combined to achieve the equivalent function.
<P>
<DT>3.
<DD>For LINPACK, an index is given for equivalents of the real LINPACK
routines; these equivalences apply also to the corresponding complex routines.
A separate table is included for equivalences of complex Hermitian routines.
For EISPACK, an index is given for all real and complex routines,
since there is no direct 1-to-1 correspondence between real and complex
routines in EISPACK.
<P>
<DT>4.
<DD>A few of the less commonly used routines in LINPACK and EISPACK have no
equivalents in Release 1.0 of LAPACK; equivalents for some of these (but not
all) are planned for a future release.
<P>
<DT>5.
<DD>For some EISPACK routines, there are LAPACK routines providing similar
functionality, but using a significantly different method, or LAPACK routines
which provide only part of the functionality; such routines are marked by
a <IMG
WIDTH="12" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1009.png"
ALT="$\dag $">.
For example, the EISPACK routine ELMHES uses non-orthogonal
transformations, whereas the nearest equivalent LAPACK routine, SGEHRD, uses
orthogonal transformations.
<P>
<DT>6.
<DD>In some cases the LAPACK equivalents require matrices to be stored
in a different storage scheme. For example:
<P>
<UL><LI>EISPACK routines BANDR<A NAME="22126"></A>, BANDV<A NAME="22127"></A>,
BQR<A NAME="22128"></A> and the driver routine RSB<A NAME="22129"></A>
require the lower triangle of
a symmetric band matrix to be stored in
a different storage scheme to that used in LAPACK, which is illustrated in
subsection <A HREF="node124.html#subsecband">5.3.3</A>. The corresponding storage scheme used by the
EISPACK routines is:
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER">symmetric band matrix <B><I>A</I></B></TD>
<TD ALIGN="CENTER">EISPACK band storage</TD>
</TR>
<TR><TD ALIGN="CENTER">
<!-- MATH
$\left( \begin{array}{ccccc}
a_{11} & a_{21} & a_{31} & & \\
a_{21} & a_{22} & a_{32} & a_{42} & \\
a_{31} & a_{32} & a_{33} & a_{43} & a_{53} \\
& a_{42} & a_{43} & a_{44} & a_{54} \\
& & a_{53} & a_{54} & a_{55}
\end{array} \right)$
-->
<IMG
WIDTH="229" HEIGHT="125" ALIGN="MIDDLE" BORDER="0"
SRC="img1010.png"
ALT="$
\left( \begin{array}{ccccc}
a_{11} & a_{21} & a_{31} & & \\
a_{21} & a_{22} &...
...a_{43} & a_{44} & a_{54} \\
& & a_{53} & a_{54} & a_{55}
\end{array} \right)
$"></TD>
<TD ALIGN="CENTER">
<!-- MATH
$\begin{array}{ccccc}
\ast & \ast & a_{11} \\
\ast & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} \\
a_{42} & a_{43} & a_{44} \\
a_{53} & a_{54} & a_{55}
\end{array}$
-->
<IMG
WIDTH="123" HEIGHT="125" ALIGN="MIDDLE" BORDER="0"
SRC="img1011.png"
ALT="$
\begin{array}{ccccc}
\ast & \ast & a_{11} \\
\ast & a_{21} & a_{22} \\
a_{...
...& a_{33} \\
a_{42} & a_{43} & a_{44} \\
a_{53} & a_{54} & a_{55}
\end{array}$"></TD>
</TR>
</TABLE>
</DIV>
<P>
<LI>EISPACK routines TRED1<A NAME="22173"></A>, TRED2<A NAME="22174"></A>,
TRED3<A NAME="22175"></A>, HTRID3<A NAME="22176"></A>,
HTRIDI<A NAME="22177"></A>, TQL1<A NAME="22178"></A>,
TQL2<A NAME="22179"></A>, IMTQL1<A NAME="22180"></A>,
IMTQL2<A NAME="22181"></A>, RATQR<A NAME="22182"></A>,
TQLRAT<A NAME="22183"></A> and the driver routine RST<A NAME="22184"></A>
store the off-diagonal elements of a symmetric tridiagonal
matrix in elements <B>2:<I>n</I></B> of the array E, whereas LAPACK routines use
elements <B>1:<I>n</I>-1</B>.
<P>
</UL>
<P>
<DT>7.
<DD>The EISPACK and LINPACK routines for the singular value decomposition
return the matrix of right singular vectors, <B><I>V</I></B>, whereas the corresponding
LAPACK routines return the transposed matrix <B><I>V</I><SUP><I>T</I></SUP></B>.
<P>
<DT>8.
<DD>In general, the argument lists of the
LAPACK routines are different from those of
the corresponding EISPACK and LINPACK
routines, and the workspace requirements are often different.
<P>
</DL>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of LINPACK routines for real matrices</TD>
</TR>
<TR><TD ALIGN="LEFT">LINPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of LINPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHDC<A NAME="22198"></A><A NAME="22199"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization with diagonal pivoting option</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHDD<A NAME="22200"></A><A NAME="22201"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Rank-1 downdate of a Cholesky factorization or the triangular factor
of a <B><I>QR</I></B> factorization</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHEX<A NAME="22202"></A><A NAME="22203"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Modifies a Cholesky factorization under permutations of the original
matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SCHUD<A NAME="22204"></A><A NAME="22205"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Rank-1 update of a Cholesky factorization or the triangular factor
of a <B><I>QR</I></B> factorization</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBCO<A NAME="22206"></A><A NAME="22207"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANGB SGBTRF<A NAME="22208"></A><A NAME="22209"></A> SGBCON<A NAME="22210"></A><A NAME="22211"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization and condition estimation of a general band
matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBDI<A NAME="22212"></A><A NAME="22213"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant of a general band matrix, after factorization by SGBCO<A NAME="22214"></A> or SGBFA<A NAME="22215"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGBFA<A NAME="22216"></A><A NAME="22217"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGBTRF<A NAME="22218"></A><A NAME="22219"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization of a general band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGBSL<A NAME="22220"></A><A NAME="22221"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGBTRS<A NAME="22222"></A><A NAME="22223"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a general band system of linear equations, after factorization
by SGBCO<A NAME="22224"></A> or SGBFA<A NAME="22225"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGECO<A NAME="22226"></A><A NAME="22227"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANGE SGETRF<A NAME="22228"></A><A NAME="22229"></A> SGECON<A NAME="22230"></A><A NAME="22231"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization and condition estimation of a general matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGEDI<A NAME="22232"></A><A NAME="22233"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGETRI<A NAME="22234"></A><A NAME="22235"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a general matrix, after factorization by
SGECO<A NAME="22236"></A> or SGEFA<A NAME="22237"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGEFA<A NAME="22238"></A><A NAME="22239"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGETRF<A NAME="22240"></A><A NAME="22241"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>LU</I></B> factorization of a general matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SGESL<A NAME="22242"></A><A NAME="22243"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGETRS<A NAME="22244"></A><A NAME="22245"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a general system of linear equations, after factorization by
SGECO<A NAME="22246"></A> or SGEFA<A NAME="22247"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SGTSL<A NAME="22248"></A><A NAME="22249"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SGTSV<A NAME="22250"></A><A NAME="22251"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a general tridiagonal system of linear equations</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBCO<A NAME="22252"></A><A NAME="22253"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANSB SPBTRF<A NAME="22254"></A><A NAME="22255"></A> SPBCON<A NAME="22256"></A><A NAME="22257"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization and condition estimation
of a symmetric positive definite band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBDI<A NAME="22258"></A><A NAME="22259"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant of a symmetric positive definite band matrix, after
factorization by SPBCO<A NAME="22260"></A> or SPBFA<A NAME="22261"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPBFA<A NAME="22262"></A><A NAME="22263"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPBTRF<A NAME="22264"></A><A NAME="22265"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization of a symmetric positive definite band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPBSL<A NAME="22266"></A><A NAME="22267"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPBTRS<A NAME="22268"></A><A NAME="22269"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite band system of linear equations,
after factorization by SPBCO<A NAME="22270"></A> or SPBFA<A NAME="22271"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPOCO<A NAME="22272"></A><A NAME="22273"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANSY SPOTRF<A NAME="22274"></A><A NAME="22275"></A> SPOCON<A NAME="22276"></A><A NAME="22277"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization and condition estimation
of a symmetric positive definite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPODI<A NAME="22278"></A><A NAME="22279"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPOTRI<A NAME="22280"></A><A NAME="22281"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a symmetric positive definite matrix, after
factorization by SPOCO<A NAME="22282"></A> or SPOFA<A NAME="22283"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPOFA<A NAME="22284"></A><A NAME="22285"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPOTRF<A NAME="22286"></A><A NAME="22287"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization of a symmetric positive definite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SPOSL<A NAME="22288"></A><A NAME="22289"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SPOTRS<A NAME="22290"></A><A NAME="22291"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite system of linear equations,
after factorization by SPOCO<A NAME="22292"></A> or SPOFA<A NAME="22293"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SPPCO<A NAME="22294"></A><A NAME="22295"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=50>SLANSY SPPTRF<A NAME="22296"></A><A NAME="22297"></A> SPPCON<A NAME="22298"></A><A NAME="22299"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization and condition estimation
of a symmetric positive definite matrix (packed storage)</TD>
</TR>
</TABLE>
</DIV>
<P>
<TABLE WIDTH="100%">
<TR><TD>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of LINPACK routines for real matrices
(continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">LINPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of LINPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPDI<A NAME="22316"></A><A NAME="22317"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPPTRI<A NAME="22318"></A><A NAME="22319"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a symmetric positive definite matrix, after
factorization by SPPCO<A NAME="22320"></A><A NAME="22321"></A> or SPPFA<A NAME="22322"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPFA<A NAME="22323"></A><A NAME="22324"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPPTRF<A NAME="22325"></A><A NAME="22326"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Cholesky factorization of a symmetric positive definite matrix
(packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SPPSL<A NAME="22327"></A><A NAME="22328"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPPTRS<A NAME="22329"></A><A NAME="22330"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite system of linear equations,
after factorization by SPPCO<A NAME="22331"></A> or SPPFA<A NAME="22332"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SPTSL<A NAME="22333"></A><A NAME="22334"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SPTSV<A NAME="22335"></A><A NAME="22336"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric positive definite tridiagonal system of linear equations</TD>
</TR>
<TR><TD ALIGN="LEFT">SQRDC<A NAME="22337"></A><A NAME="22338"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEQPF<A NAME="22339"></A><A NAME="22340"></A> or SGEQRF<A NAME="22342"></A><A NAME="22343"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331><B><I>QR</I></B> factorization with optional column pivoting</TD>
</TR>
<TR><TD ALIGN="LEFT">SQRSL<A NAME="22344"></A><A NAME="22345"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORMQR<A NAME="22346"></A><A NAME="22347"></A> STRSV<A NAME="tex2html3354"
HREF="#footmp22348"><SUP>1</SUP></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves linear least squares problems after factorization by SQRDC<A NAME="22349"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SSICO<A NAME="22350"></A><A NAME="22351"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SLANSY SSYTRF<A NAME="22352"></A><A NAME="22353"></A> SSYCON<A NAME="22354"></A><A NAME="22355"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization and condition estimation
of a symmetric indefinite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SSIDI<A NAME="22356"></A><A NAME="22357"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSYTRI<A NAME="22358"></A><A NAME="22359"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant, inertia and inverse of a symmetric indefinite matrix, after
factorization by SSICO<A NAME="22360"></A> or SSIFA<A NAME="22361"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SSIFA<A NAME="22362"></A><A NAME="22363"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSYTRF<A NAME="22364"></A><A NAME="22365"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization of a symmetric indefinite matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">SSISL<A NAME="22366"></A><A NAME="22367"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSYTRS<A NAME="22368"></A><A NAME="22369"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric indefinite system of linear equations,
after factorization by SSICO<A NAME="22370"></A> or SSIFA<A NAME="22371"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">SSPCO<A NAME="22372"></A><A NAME="22373"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SLANSP SSPTRF<A NAME="22374"></A><A NAME="22375"></A> SSPCON<A NAME="22376"></A><A NAME="22377"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization and condition estimation
of a symmetric indefinite matrix (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPDI<A NAME="22378"></A><A NAME="22379"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSPTRI<A NAME="22380"></A><A NAME="22381"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant, inertia and inverse of a symmetric indefinite matrix, after
factorization by SSPCO<A NAME="22382"></A> or SSPFA<A NAME="22383"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPFA<A NAME="22384"></A><A NAME="22385"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSPTRF<A NAME="22386"></A><A NAME="22387"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Symmetric indefinite factorization of a symmetric indefinite matrix
(packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSPSL<A NAME="22388"></A><A NAME="22389"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSPTRS<A NAME="22390"></A><A NAME="22391"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a symmetric indefinite system of linear equations,
after factorization by SSPCO<A NAME="22392"></A> or SSPFA<A NAME="22393"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">SSVDC<A NAME="22394"></A><A NAME="22395"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGESVD<A NAME="22396"></A><A NAME="22397"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All or part of the singular value decomposition of a general matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">STRCO<A NAME="22398"></A><A NAME="22399"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRCON<A NAME="22400"></A><A NAME="22401"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Condition estimation of a triangular matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">STRDI<A NAME="22402"></A><A NAME="22403"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRTRI<A NAME="22404"></A><A NAME="22405"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Determinant and inverse of a triangular matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">STRSL<A NAME="22406"></A><A NAME="22407"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRTRS<A NAME="22408"></A><A NAME="22409"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves a triangular system of linear equations</TD>
</TR>
</TABLE>
</DIV></TD></TR>
</TABLE>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of LINPACK routines for complex Hermitian matrices</TD>
</TR>
<TR><TD ALIGN="LEFT">LINPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of LINPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">CHICO<A NAME="22425"></A><A NAME="22426"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHECON<A NAME="22427"></A><A NAME="22428"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix by elimination with symmetric pivoting and
estimates the condition number of the matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CHIDI<A NAME="22429"></A><A NAME="22430"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRI<A NAME="22431"></A><A NAME="22432"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Computes the determinant, inertia and inverse of a complex Hermitian matrix
using the factors from CHIFA<A NAME="22433"></A><A NAME="22434"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CHIFA<A NAME="22435"></A><A NAME="22436"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRF<A NAME="22437"></A><A NAME="22438"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix by elimination with symmetric pivoting</TD>
</TR>
<TR><TD ALIGN="LEFT">CHISL<A NAME="22439"></A><A NAME="22440"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRS<A NAME="22441"></A><A NAME="22442"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves the complex Hermitian system Ax=b using the factors computed by CHIFA<A NAME="22443"></A><A NAME="22444"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CHPCO<A NAME="22445"></A><A NAME="22446"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPCON<A NAME="22447"></A><A NAME="22448"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix stored in packed form by elimination with
symmetric pivoting and estimates the condition number of the matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CHPDI<A NAME="22449"></A><A NAME="22450"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRI<A NAME="22451"></A><A NAME="22452"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Computes the determinant, intertia and inverse of a complex Hermitian matrix
using the factors from CHPFA<A NAME="22453"></A><A NAME="22454"></A>,
where the matrix is stored in packed form</TD>
</TR>
<TR><TD ALIGN="LEFT">CHPFA<A NAME="22455"></A><A NAME="22456"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRF<A NAME="22457"></A><A NAME="22458"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Factors a complex Hermitian matrix stored in packed form by elimination
with symmetric pivoting</TD>
</TR>
<TR><TD ALIGN="LEFT">CHPSL<A NAME="22459"></A><A NAME="22460"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRS<A NAME="22461"></A><A NAME="22462"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Solves the complex Hermitian system Ax=b using the factors computed by
CHPFA<A NAME="22463"></A><A NAME="22464"></A></TD>
</TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">BAKVEC<A NAME="22479"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors after transformation by FIGI<A NAME="22480"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">BALANC<A NAME="22481"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEBAL<A NAME="22482"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Balance a real matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">BALBAK<A NAME="22483"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEBAK<A NAME="22484"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real matrix after balancing by BALANC</TD>
</TR>
<TR><TD ALIGN="LEFT">BANDR<A NAME="22485"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSBTRD<A NAME="22486"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real symmetric band matrix to tridiagonal form</TD>
</TR>
<TR><TD ALIGN="LEFT">BANDV<A NAME="22487"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSBEVX<A NAME="22488"></A> SGBSV<A NAME="22489"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a real band matrix by inverse iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">BISECT<A NAME="22490"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEBZ<A NAME="22491"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Eigenvalues in a specified interval of a real symmetric tridiagonal matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">BQR<A NAME="22492"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSBEVX<A NAME="22493"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Some eigenvalues of a real symmetric band matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CBABK2<A NAME="22494"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEBAK<A NAME="22495"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex matrix after balancing by CBAL<A NAME="22496"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CBAL<A NAME="22497"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEBAL<A NAME="22498"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Balance a complex matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">CG<A NAME="22499"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEEV<A NAME="22500"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a complex general matrix
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">CH<A NAME="22501"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHEEV<A NAME="22502"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a complex Hermitian matrix
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">CINVIT<A NAME="22503"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHSEIN<A NAME="22504"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a complex upper Hessenberg matrix by inverse
iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">COMBAK<A NAME="22505"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNMHR<A NAME="22506"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex matrix after reduction by COMHES<A NAME="22507"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">COMHES<A NAME="22508"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEHRD<A NAME="22509"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex matrix to upper Hessenberg form by a
non-unitary transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">COMLR<A NAME="22510"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHSEQR<A NAME="22511"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a complex upper Hessenberg matrix, by
the <B><I>LR</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">COMLR2<A NAME="22512"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNGHR<A NAME="22513"></A> CHSEQR<A NAME="22514"></A> CTREVC<A NAME="22515"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a complex matrix
by the <B><I>LR</I></B> algorithm, after reduction by COMHES<A NAME="22516"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">COMQR<A NAME="22517"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHSEQR<A NAME="22518"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a complex upper Hessenberg matrix by the
<B><I>QR</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">COMQR2<A NAME="22519"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNGHR<A NAME="22520"></A> CHSEQR<A NAME="22521"></A> CTREVC<A NAME="22522"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a complex matrix by the <B><I>QR</I></B> algorithm,
after reduction by CORTH<A NAME="22523"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CORTB<A NAME="22524"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNMHR<A NAME="22525"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex matrix, after reduction by CORTH<A NAME="22526"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">CORTH<A NAME="22527"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CGEHRD<A NAME="22528"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex matrix to upper Hessenberg form by a unitary transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">ELMBAK<A NAME="22529"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORMHR<A NAME="22530"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real matrix after reduction by ELMHES<A NAME="22531"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">ELMHES<A NAME="22532"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEHRD<A NAME="22533"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real matrix to upper Hessenberg form by a
non-orthogonal transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">ELTRAN<A NAME="22534"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORGHR<A NAME="22535"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Generate transformation matrix used by ELMHES<A NAME="22536"></A></TD>
</TR>
</TABLE>
</DIV>
<P>
<TABLE WIDTH="100%">
<TR><TD>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines (continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">FIGI<A NAME="22553"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Transform a nonsymmetric tridiagonal matrix of special form to a symmetric
matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">FIGI2<A NAME="22554"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>As FIGI, with generation of the transformation matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">HQR<A NAME="22555"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHSEQR<A NAME="22556"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a complex upper Hessenberg matrix by the
<B><I>QR</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">HQR2<A NAME="22557"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHSEQR<A NAME="22558"></A> STREVC<A NAME="22559"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a real upper Hessenberg matrix by the <B><I>QR</I></B>
algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">HTRIB3<A NAME="22560"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUPMTR<A NAME="22561"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex Hermitian matrix after reduction
by HTRID3<A NAME="22562"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">HTRIBK<A NAME="22563"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CUNMTR<A NAME="22564"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a complex Hermitian matrix after reduction
by HTRIDI<A NAME="22565"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">HTRID3<A NAME="22566"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHPTRD<A NAME="22567"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex Hermitian matrix to tridiagonal form (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">HTRIDI<A NAME="22568"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>CHETRD<A NAME="22569"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a complex Hermitian matrix to tridiagonal form</TD>
</TR>
<TR><TD ALIGN="LEFT">IMTQL1<A NAME="22570"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEQR<A NAME="22571"></A> or SSTERF<A NAME="22572"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a symmetric tridiagonal matrix, by the
implicit <B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">IMTQL2<A NAME="22573"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEQR<A NAME="22574"></A> or SSTEDC<A NAME="22576"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a symmetric tridiagonal matrix, by the implicit
<B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">IMTQLV<A NAME="22577"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEQR<A NAME="22578"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>As IMTQL1<A NAME="22579"></A>, preserving the input matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">INVIT<A NAME="22580"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHSEIN<A NAME="22581"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a real upper Hessenberg matrix, by inverse
iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">MINFIT<A NAME="22582"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGELSS<A NAME="22583"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Minimum norm solution of a linear least squares problem, using the singular
value decomposition</TD>
</TR>
<TR><TD ALIGN="LEFT">ORTBAK<A NAME="22584"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORMHR<A NAME="22585"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real matrix after reduction to upper
Hessenberg form by ORTHES<A NAME="22586"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">ORTHES<A NAME="22587"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGEHRD<A NAME="22588"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real matrix to upper Hessenberg form by an orthogonal
transformation</TD>
</TR>
<TR><TD ALIGN="LEFT">ORTRAN<A NAME="22589"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SORGHR<A NAME="22590"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Generate orthogonal transformation matrix used by ORTHES</TD>
</TR>
<TR><TD ALIGN="LEFT">QZHES<A NAME="22591"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SGGHRD<A NAME="22592"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real generalized eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">
to
a form in which <B><I>A</I></B> is upper Hessenberg and <B><I>B</I></B> is upper triangular</TD>
</TR>
<TR><TD ALIGN="LEFT">QZIT<A NAME="22593"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SHGEQZ<A NAME="22594"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Generalized Schur factorization of a real generalized
eigenproblem,</TD>
</TR>
<TR><TD ALIGN="LEFT">QZVAL<A NAME="22595"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>after reduction by QZHES<A NAME="22596"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">QZVEC<A NAME="22597"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STGEVC<A NAME="22598"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvectors of a real generalized eigenproblem from generalized
Schur factorization</TD>
</TR>
<TR><TD ALIGN="LEFT">RATQR<A NAME="22599"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>SSTEBZ<A NAME="22600"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Extreme eigenvalues of a symmetric tridiagonal matrix using the rational QR
algorithm with Newton corrections</TD>
</TR>
<TR><TD ALIGN="LEFT">REBAK<A NAME="22601"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRSM<A NAME="tex2html3545"
HREF="#footmp22602"><SUP>1</SUP></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a symmetric definite generalized eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">
or
<!-- MATH
$A B x = \lambda x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">
after reduction by REDUC<A NAME="22603"></A> or REDUC2<A NAME="22604"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">REBAKB<A NAME="22605"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=47>STRMM<A NAME="tex2html3546"
HREF="#footmp22606"><SUP>2</SUP></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a symmetric definite generalized eigenproblem
<!-- MATH
$B A x = \lambda x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">
after reduction by REDUC2<A NAME="22607"></A></TD>
</TR>
</TABLE>
</DIV></TD></TR>
</TABLE>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines (continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">REDUC<A NAME="22623"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGST<A NAME="22624"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce the symmetric definite generalized eigenproblem
<!-- MATH
$Ax = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">
to a standard symmetric eigenproblem</TD>
</TR>
<TR><TD ALIGN="LEFT">REDUC2<A NAME="22625"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGST<A NAME="22626"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce the symmetric definite generalized eigenproblem
<!-- MATH
$A B x = \lambda x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">
or
<!-- MATH
$B A x = \lambda x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">
to a standard symmetric eigenproblem</TD>
</TR>
<TR><TD ALIGN="LEFT">RG<A NAME="22627"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SGEEV<A NAME="22628"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real general matrix
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RGG<A NAME="22629"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SGEGV<A NAME="22630"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors or a real generalized
eigenproblem (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RS<A NAME="22631"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYEV<A NAME="22632"></A> or SSYEVD<A NAME="22633"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric matrix
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSB<A NAME="22634"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSBEV<A NAME="22635"></A> or SSBEVD<A NAME="22637"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric band matrix
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSG<A NAME="22638"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGV<A NAME="22639"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric definite
generalized eigenproblem
<!-- MATH
$A x = \lambda B x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSGAB<A NAME="22640"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGV<A NAME="22641"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric definite
generalized eigenproblem
<!-- MATH
$A B x = \lambda x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img951.png"
ALT="$ABx=\lambda x$">
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSGBA<A NAME="22642"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYGV<A NAME="22643"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric definite
generalized eigenproblem
<!-- MATH
$B A x = \lambda x$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img952.png"
ALT="$BAx=\lambda x$">
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSM<A NAME="22644"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYEVX<A NAME="22645"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvalues and optionally eigenvectors of a real symmetric matrix
(driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RSP<A NAME="22646"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSPEV<A NAME="22647"></A> or SSPEVD<A NAME="22648"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric matrix
(packed storage) (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RST<A NAME="22649"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEV<A NAME="22650"></A> or SSTEVD<A NAME="22651"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real symmetric tridiagonal
matrix (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">RT<A NAME="22652"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues and optionally eigenvectors of a real tridiagonal matrix
of special form (driver routine)</TD>
</TR>
<TR><TD ALIGN="LEFT">SVD<A NAME="22653"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SGESVD<A NAME="22654"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Singular value decomposition of a real matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">TINVIT<A NAME="22655"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEIN<A NAME="22656"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Selected eigenvectors of a symmetric tridiagonal matrix by inverse
iteration</TD>
</TR>
<TR><TD ALIGN="LEFT">TQL1<A NAME="22657"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEQR<A NAME="22658"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag">
<BR>
or SSTERF<A NAME="22660"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a symmetric tridiagonal matrix by the explicit
<B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">TQL2<A NAME="22661"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEQR<A NAME="22662"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag">
<BR>
or SSTEDC<A NAME="22664"></A><IMG
WIDTH="8" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img1012.png"
ALT="\dag"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues/vectors of a symmetric tridiagonal matrix by the explicit
<B><I>QL</I></B> algorithm</TD>
</TR>
<TR><TD ALIGN="LEFT">TQLRAT<A NAME="22665"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTERF<A NAME="22666"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>All eigenvalues of a symmetric tridiagonal matrix by a rational variant of
the <B><I>QL</I></B> algorithm</TD>
</TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="CENTER" COLSPAN=3>LAPACK equivalents of EISPACK routines (continued)</TD>
</TR>
<TR><TD ALIGN="LEFT">EISPACK</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>LAPACK</TD>
<TD ALIGN="CENTER" COLSPAN=1>Function of EISPACK routine</TD>
</TR>
<TR><TD ALIGN="LEFT">TRBAK1<A NAME="22681"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SORMTR<A NAME="22682"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real symmetric matrix after reduction by
TRED1<A NAME="22683"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">TRBAK3<A NAME="22684"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SOPMTR<A NAME="22685"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Backtransform eigenvectors of a real symmetric matrix after reduction by
TRED3<A NAME="22686"></A> (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">TRED1<A NAME="22687"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYTRD<A NAME="22688"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real symmetric matrix to tridiagonal form</TD>
</TR>
<TR><TD ALIGN="LEFT">TRED2<A NAME="22689"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSYTRD<A NAME="22690"></A> SORGTR<A NAME="22691"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>As TRED1<A NAME="22692"></A>, but also generating the orthogonal transformation matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">TRED3<A NAME="22693"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSPTRD<A NAME="22694"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Reduce a real symmetric matrix to tridiagonal form (packed storage)</TD>
</TR>
<TR><TD ALIGN="LEFT">TRIDIB<A NAME="22695"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEBZ<A NAME="22696"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Eigenvalues between specified indices of a symmetric tridiagonal matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">TSTURM<A NAME="22697"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=43>SSTEBZ<A NAME="22698"></A> SSTEIN<A NAME="22699"></A></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=331>Eigenvalues in a specified interval of a symmetric tridiagonal matrix,
and corresponding eigenvectors by inverse iteration</TD>
</TR>
</TABLE>
</DIV>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html6282"
HREF="node148.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html6276"
HREF="node146.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html6272"
HREF="node146.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html6278"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html6280"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html6283"
HREF="node148.html">LAPACK Working Notes</A>
<B> Up:</B> <A NAME="tex2html6277"
HREF="node146.html">Converting from LINPACK or</A>
<B> Previous:</B> <A NAME="tex2html6273"
HREF="node146.html">Converting from LINPACK or</A>
  <B> <A NAME="tex2html6279"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html6281"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|