1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Linear Least Squares (LLS) Problems</TITLE>
<META NAME="description" CONTENT="Linear Least Squares (LLS) Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node28.html">
<LINK REL="previous" HREF="node26.html">
<LINK REL="up" HREF="node25.html">
<LINK REL="next" HREF="node28.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4503"
HREF="node28.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4497"
HREF="node25.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4491"
HREF="node26.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4499"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4501"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4504"
HREF="node28.html">Generalized Linear Least Squares</A>
<B> Up:</B> <A NAME="tex2html4498"
HREF="node25.html">Driver Routines</A>
<B> Previous:</B> <A NAME="tex2html4492"
HREF="node26.html">Linear Equations</A>
  <B> <A NAME="tex2html4500"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4502"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03232000000000000000"></A><A NAME="subsecdrivellsq"></A><A NAME="1331"></A>
<BR>
Linear Least Squares (LLS) Problems
</H2>
<P>
The <B>linear least squares problem</B><A NAME="1333"></A> is:
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathop{\mbox{minimize }}_{x} \| b - A x {\|}_2
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="llsq"></A><IMG
WIDTH="153" HEIGHT="38" BORDER="0"
SRC="img9.png"
ALT="\begin{displaymath}
\mathop{\mbox{minimize }}_{x} \Vert b - A x {\Vert}_2
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(2.1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <I>A</I> is an <I>m</I>-by-<I>n</I> matrix, <I>b</I> is a given <I>m</I> element vector
and <I>x</I> is the <I>n</I> element solution vector.
<P>
In the most usual case <IMG
WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img10.png"
ALT="$m \ge n$">
and
<!-- MATH
$\mbox{rank}(A) = n$
-->
<IMG
WIDTH="99" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png"
ALT="$\mbox{rank}(A) = n$">,
and in this case the
solution to problem (<A HREF="node27.html#llsq">2.1</A>) is unique,
and the problem is also
referred to as finding a <B>least squares solution</B> to an
<B>overdetermined</B><A NAME="1344"></A> system of linear equations.
<P>
When <I>m</I> < <I>n</I> and
<!-- MATH
$\mbox{rank}(A) = m$
-->
<IMG
WIDTH="104" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img12.png"
ALT="$\mbox{rank}(A) = m$">,
there are an infinite number
of solutions <I>x</I>
which exactly satisfy <I>b</I>-<I>Ax</I>=0. In this case it is often useful to find
the unique solution <I>x</I> which minimizes |x|<SUB>2</SUB>,
and the problem
is referred to as finding a <B>minimum norm solution</B><A NAME="1347"></A> to an
<B>underdetermined</B><A NAME="1349"></A> system of linear equations.
<P>
The driver routine xGELS<A NAME="1350"></A>
solves problem (<A HREF="node27.html#llsq">2.1</A>) on the assumption that
<!-- MATH
$\mbox{rank}(A) = \min(m,n)$
-->
<IMG
WIDTH="165" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img13.png"
ALT="$\mbox{rank}(A) = \min(m,n)$">
-- in other words, <I>A</I> has <B>full rank</B> --
finding a least squares solution of an overdetermined<A NAME="1354"></A> system
when <I>m</I> > <I>n</I>, and a minimum norm solution of an underdetermined<A NAME="1355"></A> system
when <I>m</I> < <I>n</I>.
xGELS<A NAME="1356"></A><A NAME="1357"></A><A NAME="1358"></A><A NAME="1359"></A> uses a <I>QR</I> or <I>LQ</I> factorization of <I>A</I>, and also allows <I>A</I> to be
replaced by <I>A</I><SUP><I>T</I></SUP> in the statement of the problem (or by <I>A</I><SUP><I>H</I></SUP> if <I>A</I> is
complex).
<P>
In the general case when we may have
<!-- MATH
$\mbox{rank}(A) < \min(m,n)$
-->
<IMG
WIDTH="165" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img14.png"
ALT="$\mbox{rank}(A) < \min(m,n)$">
-- in other words,
<I>A</I> may be <B>rank-deficient</B> --
we seek the <B>minimum norm least squares</B> solution<A NAME="1363"></A> <I>x</I>
which minimizes both |x|<SUB>2</SUB> and
<!-- MATH
$\|b - Ax{\|}_2$
-->
<IMG
WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img15.png"
ALT="$\Vert b - Ax{\Vert}_2$">.
<P>
The driver routines
xGELSX<A NAME="1365"></A><A NAME="1366"></A><A NAME="1367"></A><A NAME="1368"></A>,
xGELSY<A NAME="1369"></A><A NAME="1370"></A><A NAME="1371"></A><A NAME="1372"></A>,
xGELSS<A NAME="1373"></A><A NAME="1374"></A><A NAME="1375"></A><A NAME="1376"></A>,
and xGELSD<A NAME="1377"></A><A NAME="1378"></A><A NAME="1379"></A><A NAME="1380"></A>,<A NAME="1381"></A><A NAME="1382"></A>
solve this general formulation of problem <A HREF="node27.html#llsq">2.1</A>,
allowing for the possibility that <I>A</I> is rank-deficient;
xGELSX<A NAME="1384"></A><A NAME="1385"></A><A NAME="1386"></A><A NAME="1387"></A> and
xGELSY<A NAME="1388"></A><A NAME="1389"></A><A NAME="1390"></A><A NAME="1391"></A> use a
<B>complete orthogonal factorization</B> of <I>A</I>,
while xGELSS<A NAME="1393"></A><A NAME="1394"></A><A NAME="1395"></A><A NAME="1396"></A> uses
the <B>singular value decomposition</B> of <I>A</I>,
and xGELSD<A NAME="1398"></A><A NAME="1399"></A><A NAME="1400"></A><A NAME="1401"></A> uses
the <B>singular value decomposition</B> of <I>A</I> with an algorithm based on
divide and conquer<A NAME="1403"></A>.
<P>
The subroutine xGELSY is a faster version of xGELSX, but requires more
workspace since it calls blocked algorithms to perform the complete
orthogonal factorization. xGELSX has been retained for compatibility
with Release 2.0 of LAPACK, but we omit references to this routine
in the remainder of this users' guide.
<P>
The subroutine xGELSD is significantly faster than its older counterpart xGELSS,
especially for large problems, but may require somewhat more workspace depending
on the matrix dimensions.
<P>
The LLS<A NAME="1404"></A> driver routines are listed in Table <A HREF="node27.html#tabdrivellsq">2.3</A>.
<P>
All four routines allow several right hand side vectors <I>b</I> and corresponding
solutions <I>x</I> to be handled in a single call, storing these vectors as columns
of matrices <I>B</I> and <I>X</I>, respectively.
Note however that problem <A HREF="node27.html#llsq">2.1</A> is solved for
each right hand side vector independently; this is <I>not</I> the same as
finding a matrix <I>X</I> which minimizes
<!-- MATH
$\| B - A X \|_2$
-->
<IMG
WIDTH="94" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img16.png"
ALT="$\Vert B - A X \Vert _2$">.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabdrivellsq"></A>
<DIV ALIGN="CENTER">
<A NAME="1409"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.3:</STRONG>
Driver routines for linear least squares problems</CAPTION>
<TR><TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">solve LLS using <I>QR</I> or <I>LQ</I> factorization</TD>
<TD ALIGN="LEFT">SGELS<A NAME="1421"></A></TD>
<TD ALIGN="LEFT">CGELS<A NAME="1422"></A></TD>
<TD ALIGN="LEFT">DGELS<A NAME="1423"></A></TD>
<TD ALIGN="LEFT">ZGELS<A NAME="1424"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">solve LLS using complete orthogonal factorization</TD>
<TD ALIGN="LEFT">SGELSY<A NAME="1425"></A></TD>
<TD ALIGN="LEFT">CGELSY<A NAME="1426"></A></TD>
<TD ALIGN="LEFT">DGELSY<A NAME="1427"></A></TD>
<TD ALIGN="LEFT">ZGELSY<A NAME="1428"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">solve LLS using SVD</TD>
<TD ALIGN="LEFT">SGELSS<A NAME="1429"></A></TD>
<TD ALIGN="LEFT">CGELSS<A NAME="1430"></A></TD>
<TD ALIGN="LEFT">DGELSS<A NAME="1431"></A></TD>
<TD ALIGN="LEFT">ZGELSS<A NAME="1432"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">solve LLS using divide-and-conquer SVD</TD>
<TD ALIGN="LEFT">SGELSD<A NAME="1433"></A></TD>
<TD ALIGN="LEFT">CGELSD<A NAME="1434"></A></TD>
<TD ALIGN="LEFT">DGELSD<A NAME="1435"></A></TD>
<TD ALIGN="LEFT">ZGELSD<A NAME="1436"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4503"
HREF="node28.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4497"
HREF="node25.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4491"
HREF="node26.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4499"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4501"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4504"
HREF="node28.html">Generalized Linear Least Squares</A>
<B> Up:</B> <A NAME="tex2html4498"
HREF="node25.html">Driver Routines</A>
<B> Previous:</B> <A NAME="tex2html4492"
HREF="node26.html">Linear Equations</A>
  <B> <A NAME="tex2html4500"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4502"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|