1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Linear Least Squares (LSE and GLM) Problems</TITLE>
<META NAME="description" CONTENT="Generalized Linear Least Squares (LSE and GLM) Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node29.html">
<LINK REL="previous" HREF="node27.html">
<LINK REL="up" HREF="node25.html">
<LINK REL="next" HREF="node29.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4517"
HREF="node29.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4511"
HREF="node25.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4505"
HREF="node27.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4513"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4515"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4518"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Up:</B> <A NAME="tex2html4512"
HREF="node25.html">Driver Routines</A>
<B> Previous:</B> <A NAME="tex2html4506"
HREF="node27.html">Linear Least Squares (LLS)</A>
  <B> <A NAME="tex2html4514"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4516"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03233000000000000000"></A><A NAME="subsecdrivegllsq"></A>
<BR>
Generalized Linear Least Squares (LSE and GLM) Problems
</H2>
<P>
Driver routines are provided for two types of generalized linear least squares
problems.<A NAME="1442"></A>
<A NAME="1443"></A>
<A NAME="1444"></A>
<P>
The first is
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\min _{x} \|c - Ax\|_2 \;\;\; \mbox{subject to} \;\;\; B x = d
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eqnLSE"></A><IMG
WIDTH="270" HEIGHT="38" BORDER="0"
SRC="img17.png"
ALT="\begin{displaymath}
\min _{x} \Vert c - Ax\Vert _2 \;\;\; \mbox{subject to} \;\;\; B x = d
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(2.2)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <I>A</I> is an <I>m</I>-by-<I>n</I> matrix and <I>B</I> is a <I>p</I>-by-<I>n</I> matrix,
<I>c</I> is a given <I>m</I>-vector, and <I>d</I> is a given <I>p</I>-vector,
with
<!-- MATH
$p \leq n \leq m+p$
-->
<IMG
WIDTH="116" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img18.png"
ALT="$p \leq n \leq m+p$">.
This is
called a <B>linear equality-constrained least squares problem (LSE)</B>.
The routine xGGLSE<A NAME="1451"></A><A NAME="1452"></A><A NAME="1453"></A>
solves this problem using the generalized <I>RQ</I>
(GRQ) factorization,<A NAME="1454"></A><A NAME="1455"></A> on the
assumptions that <I>B</I> has full row rank <I>p</I> and
the matrix
<!-- MATH
$\left( \begin{array}{c}
A \\
B
\end{array} \right)$
-->
<IMG
WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img19.png"
ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">
has full column rank <I>n</I>.
Under these assumptions, the problem LSE<A NAME="1459"></A> has a unique solution.
<P>
The second generalized linear least squares problem is
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\min _{x} \|y\|_2 \;\;\; \mbox{subject to} \;\;\; d = A x + B y
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="glm3"></A><A NAME="eqnGLM"></A><IMG
WIDTH="271" HEIGHT="38" BORDER="0"
SRC="img20.png"
ALT="\begin{displaymath}
\min _{x} \Vert y\Vert _2 \;\;\; \mbox{subject to} \;\;\; d = A x + B y
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(2.3)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <I>A</I> is an <I>n</I>-by-<I>m</I> matrix, <I>B</I> is an <I>n</I>-by-<I>p</I> matrix,
and <I>d</I> is a given <I>n</I>-vector,
with
<!-- MATH
$m \leq n \leq m+p$
-->
<IMG
WIDTH="122" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img21.png"
ALT="$m \leq n \leq m+p$">.
This is sometimes called a <B>general</B> (Gauss-Markov) <B>linear model problem (GLM)</B>.
<A NAME="1468"></A>
<A NAME="1469"></A><A NAME="1470"></A>
When <I>B</I> = <I>I</I>, the problem reduces to an ordinary linear least squares problem.
When <I>B</I> is square and nonsingular, the GLM problem is equivalent to the
<B>weighted linear least squares problem</B>:<A NAME="1472"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\min_x \|B^{-1}(d-Ax) \|_2
\end{displaymath}
-->
<IMG
WIDTH="154" HEIGHT="38" BORDER="0"
SRC="img22.png"
ALT="\begin{displaymath}\min_x \Vert B^{-1}(d-Ax) \Vert _2 \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The routine xGGGLM<A NAME="1474"></A><A NAME="1475"></A><A NAME="1476"></A><A NAME="1477"></A>
solves this problem using the generalized <I>QR</I> (GQR)
factorization,<A NAME="1478"></A><A NAME="1479"></A> on the
assumptions that <I>A</I> has full column rank <I>m</I>, and the
matrix ( <I>A</I>, <I>B</I> ) has full row rank <I>n</I>. Under these assumptions, the
problem is always consistent, and there are unique solutions <I>x</I> and <I>y</I>.
The driver routines for generalized linear least squares problems are listed
in Table <A HREF="node28.html#tabdrivegllsq">2.4</A>.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabdrivegllsq"></A>
<DIV ALIGN="CENTER">
<A NAME="1482"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.4:</STRONG>
Driver routines for generalized linear least squares problems</CAPTION>
<TR><TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">solve LSE problem using GRQ</TD>
<TD ALIGN="LEFT">SGGLSE<A NAME="1494"></A></TD>
<TD ALIGN="LEFT">CGGLSE<A NAME="1495"></A></TD>
<TD ALIGN="LEFT">DGGLSE<A NAME="1496"></A></TD>
<TD ALIGN="LEFT">ZGGLSE<A NAME="1497"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">solve GLM problem using GQR</TD>
<TD ALIGN="LEFT">SGGGLM<A NAME="1498"></A></TD>
<TD ALIGN="LEFT">CGGGLM<A NAME="1499"></A></TD>
<TD ALIGN="LEFT">DGGGLM<A NAME="1500"></A></TD>
<TD ALIGN="LEFT">ZGGGLM<A NAME="1501"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4517"
HREF="node29.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4511"
HREF="node25.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4505"
HREF="node27.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4513"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4515"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4518"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Up:</B> <A NAME="tex2html4512"
HREF="node25.html">Driver Routines</A>
<B> Previous:</B> <A NAME="tex2html4506"
HREF="node27.html">Linear Least Squares (LLS)</A>
  <B> <A NAME="tex2html4514"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4516"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|