1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Symmetric Eigenproblems (SEP)</TITLE>
<META NAME="description" CONTENT="Symmetric Eigenproblems (SEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node31.html">
<LINK REL="previous" HREF="node29.html">
<LINK REL="up" HREF="node29.html">
<LINK REL="next" HREF="node31.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4548"
HREF="node31.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4542"
HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4536"
HREF="node29.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4544"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4546"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4549"
HREF="node31.html">Nonsymmetric Eigenproblems (NEP)</A>
<B> Up:</B> <A NAME="tex2html4543"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4537"
HREF="node29.html">Standard Eigenvalue and Singular</A>
  <B> <A NAME="tex2html4545"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4547"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03234100000000000000"></A><A NAME="subsecdriveeigSEP"></A>
<BR>
Symmetric Eigenproblems (SEP)
</H3>
<P>
The <B>symmetric eigenvalue problem</B> is to find the <B>eigenvalues</B><A NAME="1511"></A><A NAME="1512"></A>,
<IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">,
and corresponding <B>eigenvectors</B><A NAME="1514"></A>, <IMG
WIDTH="45" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img24.png"
ALT="$z \ne 0$">,
such that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
Az = \lambda z, \quad A = A^T, \mbox{ where } A \mbox{ is real}.
\end{displaymath}
-->
<IMG
WIDTH="282" HEIGHT="30" BORDER="0"
SRC="img25.png"
ALT="\begin{displaymath}
Az = \lambda z, \quad A = A^T, \mbox{ where } A \mbox{ is real}.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
For the <B>Hermitian eigenvalue problem</B> we have
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
Az = \lambda z, \quad A = A^H.
\end{displaymath}
-->
<IMG
WIDTH="156" HEIGHT="30" BORDER="0"
SRC="img26.png"
ALT="\begin{displaymath}
Az = \lambda z, \quad A = A^H.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
For both problems the eigenvalues <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
are real.
<P>
When all eigenvalues and eigenvectors have been computed, we write:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = Z \Lambda Z^T
\end{displaymath}
-->
<IMG
WIDTH="85" HEIGHT="27" BORDER="0"
SRC="img27.png"
ALT="\begin{displaymath}
A = Z \Lambda Z^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$\Lambda$">
is a diagonal matrix whose diagonal elements are the
eigenvalues<A NAME="1518"></A>, and <I>Z</I> is an orthogonal (or unitary) matrix whose columns
are the eigenvectors. This is the classical <B>spectral factorization</B>
<A NAME="1520"></A> of <I>A</I>.
<P>
There are four types of driver routines for symmetric and Hermitian eigenproblems.
Originally LAPACK had just the simple and expert drivers described below, and
the other two were added after improved algorithms were discovered. Ultimately
we expect the algorithm in the most recent driver (called RRR below) to supersede
all the others, but in LAPACK 3.0 the other drivers may still be faster on some
problems, so we retain them.
<P>
<UL><LI>A <B>simple</B> driver (name ending -EV) computes all the eigenvalues and
(optionally) eigenvectors.
<P>
<LI>An <B>expert</B> driver (name ending -EVX) computes all or a selected subset
of the eigenvalues and (optionally) eigenvectors. If few enough
eigenvalues or eigenvectors are desired, the expert driver is faster
than the simple driver.
<P>
<LI>A <B>divide-and-conquer</B> driver (name ending -EVD) solves the same problem
as the simple driver. It is much faster than the simple driver
for large matrices, but uses more workspace. The name divide-and-conquer
refers to the underlying algorithm (see sections <A HREF="node48.html#subseccompsep">2.4.4</A>
and <A HREF="node70.html#subsecblockeig">3.4.3</A>).
<P>
<LI>A <B>relatively robust representation</B> (RRR) driver (name ending -EVR) computes
all or (in a later release) a subset of the eigenvalues, and (optionally)
eigenvectors. It is the fastest algorithm of all (except for a few cases),
and uses the least workspace. The name RRR refers to the underlying
algorithm (see sections <A HREF="node48.html#subseccompsep">2.4.4</A> and <A HREF="node70.html#subsecblockeig">3.4.3</A>).
<P>
</UL>
<P>
Different driver routines are provided to take advantage of special
structure or storage of the matrix <I>A</I>, as shown in
Table <A HREF="node32.html#tabdriveseig">2.5</A>.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4548"
HREF="node31.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4542"
HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4536"
HREF="node29.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4544"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4546"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4549"
HREF="node31.html">Nonsymmetric Eigenproblems (NEP)</A>
<B> Up:</B> <A NAME="tex2html4543"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4537"
HREF="node29.html">Standard Eigenvalue and Singular</A>
  <B> <A NAME="tex2html4545"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4547"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|