1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Nonsymmetric Eigenproblems (NEP)</TITLE>
<META NAME="description" CONTENT="Nonsymmetric Eigenproblems (NEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node32.html">
<LINK REL="previous" HREF="node30.html">
<LINK REL="up" HREF="node29.html">
<LINK REL="next" HREF="node32.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4562"
HREF="node32.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4556"
HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4550"
HREF="node30.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4558"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4560"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4563"
HREF="node32.html">Singular Value Decomposition (SVD)</A>
<B> Up:</B> <A NAME="tex2html4557"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4551"
HREF="node30.html">Symmetric Eigenproblems (SEP)</A>
  <B> <A NAME="tex2html4559"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4561"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03234200000000000000">
Nonsymmetric Eigenproblems (NEP)</A>
</H3>
<P>
The <B>nonsymmetric eigenvalue problem</B> is to find the <B>eigenvalues</B><A NAME="1535"></A><A NAME="1536"></A>,
<IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">,
and corresponding <B>eigenvectors</B><A NAME="1538"></A>, <IMG
WIDTH="45" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img29.png"
ALT="$v \ne 0$">,
such that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
Av = \lambda v.
\end{displaymath}
-->
<IMG
WIDTH="68" HEIGHT="27" BORDER="0"
SRC="img30.png"
ALT="\begin{displaymath}
Av = \lambda v.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
A real matrix <I>A</I> may have complex eigenvalues, occurring as complex conjugate
pairs. More precisely, the vector <I>v</I> is called a <B>right
eigenvector</B><A NAME="1540"></A> of <I>A</I>, and a vector <IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img31.png"
ALT="$u\neq 0$">
satisfying
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
u^HA = \lambda u^H
\end{displaymath}
-->
<IMG
WIDTH="91" HEIGHT="27" BORDER="0"
SRC="img32.png"
ALT="\begin{displaymath}
u^HA = \lambda u^H
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
is called a <B>left eigenvector</B><A NAME="1542"></A> of <I>A</I>.
<P>
This problem can be solved
via the <B>Schur factorization</B><A NAME="1544"></A> of <I>A</I>,
defined in the real case as
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = ZTZ^T,
\end{displaymath}
-->
<I>A</I> = <I>ZTZ</I><SUP><I>T</I></SUP>,
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Z</I> is an orthogonal matrix and <I>T</I> is an upper quasi-triangular matrix
with 1-by-1 and 2-by-2 diagonal blocks, the 2-by-2 blocks
corresponding to complex conjugate pairs of eigenvalues of <I>A</I>. In the complex
case the Schur factorization is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = ZTZ^H,
\end{displaymath}
-->
<I>A</I> = <I>ZTZ</I><SUP><I>H</I></SUP>,
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Z</I> is unitary and <I>T</I> is a complex upper triangular matrix.
<P>
The columns of <I>Z</I> are called the <B>Schur vectors</B><A NAME="1546"></A>.
For each <I>k</I>
<!-- MATH
$(1 \leq k \leq n)$
-->
<IMG
WIDTH="93" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img33.png"
ALT="$(1 \leq k \leq n)$">,
the first <I>k</I> columns of <I>Z</I> form an orthonormal
<A NAME="1547"></A>
basis for the <B>invariant subspace</B> corresponding to the
first <I>k</I> eigenvalues on the diagonal of <I>T</I>. Because this
basis is orthonormal, it is preferable in many
applications to compute Schur vectors rather than
eigenvectors. It is possible to order the Schur
factorization so that any desired set of <I>k</I> eigenvalues
occupy the <I>k</I> leading positions on the diagonal of <I>T</I>.
<P>
Two pairs of drivers<A NAME="1549"></A> are provided, one pair focusing on the Schur
factorization, and the other pair on the eigenvalues and eigenvectors
as shown in Table <A HREF="node32.html#tabdriveseig">2.5</A>:
<P>
<UL><LI>xGEES<A NAME="1552"></A><A NAME="1553"></A><A NAME="1554"></A><A NAME="1555"></A>: a simple driver that computes all or part of the Schur
factorization of <I>A</I>, with optional ordering of the eigenvalues;
<A NAME="1556"></A>
<P>
<LI>xGEESX<A NAME="1557"></A><A NAME="1558"></A><A NAME="1559"></A><A NAME="1560"></A>: an expert driver that can additionally compute condition
numbers for the average of a selected subset of the eigenvalues, and for
the corresponding right invariant subspace;
<P>
<LI>xGEEV<A NAME="1561"></A><A NAME="1562"></A><A NAME="1563"></A><A NAME="1564"></A>: a simple driver that computes all the eigenvalues of <I>A</I>,
and (optionally) the right or left eigenvectors (or both);
<P>
<LI>xGEEVX<A NAME="1565"></A><A NAME="1566"></A><A NAME="1567"></A><A NAME="1568"></A>: an expert driver that can additionally balance the
matrix to improve the conditioning of the eigenvalues and eigenvectors,
and compute condition numbers for the eigenvalues or right eigenvectors
(or both).
<P>
</UL>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4562"
HREF="node32.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4556"
HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4550"
HREF="node30.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4558"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4560"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4563"
HREF="node32.html">Singular Value Decomposition (SVD)</A>
<B> Up:</B> <A NAME="tex2html4557"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4551"
HREF="node30.html">Symmetric Eigenproblems (SEP)</A>
  <B> <A NAME="tex2html4559"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4561"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|