File: node31.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (252 lines) | stat: -rw-r--r-- 7,521 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Nonsymmetric Eigenproblems (NEP)</TITLE>
<META NAME="description" CONTENT="Nonsymmetric Eigenproblems (NEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node32.html">
<LINK REL="previous" HREF="node30.html">
<LINK REL="up" HREF="node29.html">
<LINK REL="next" HREF="node32.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4562"
 HREF="node32.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4556"
 HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4550"
 HREF="node30.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4558"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4560"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4563"
 HREF="node32.html">Singular Value Decomposition (SVD)</A>
<B> Up:</B> <A NAME="tex2html4557"
 HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4551"
 HREF="node30.html">Symmetric Eigenproblems (SEP)</A>
 &nbsp <B>  <A NAME="tex2html4559"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4561"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03234200000000000000">
Nonsymmetric Eigenproblems (NEP)</A>
</H3>

<P>
The <B>nonsymmetric eigenvalue problem</B> is to find the <B>eigenvalues</B><A NAME="1535"></A><A NAME="1536"></A>,
<IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">,
and corresponding <B>eigenvectors</B><A NAME="1538"></A>, <IMG
 WIDTH="45" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img29.png"
 ALT="$v \ne 0$">,
such that
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
Av = \lambda v.
\end{displaymath}
 -->


<IMG
 WIDTH="68" HEIGHT="27" BORDER="0"
 SRC="img30.png"
 ALT="\begin{displaymath}
Av = \lambda v.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
A real matrix <I>A</I> may have complex eigenvalues, occurring as complex conjugate
pairs. More precisely, the vector <I>v</I> is called a <B>right
eigenvector</B><A NAME="1540"></A> of <I>A</I>, and a vector <IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img31.png"
 ALT="$u\neq 0$">
satisfying
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
u^HA = \lambda u^H
\end{displaymath}
 -->


<IMG
 WIDTH="91" HEIGHT="27" BORDER="0"
 SRC="img32.png"
 ALT="\begin{displaymath}
u^HA = \lambda u^H
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
is called a <B>left eigenvector</B><A NAME="1542"></A> of <I>A</I>.

<P>
This problem can be solved
via the <B>Schur factorization</B><A NAME="1544"></A> of <I>A</I>,
defined in the real case as
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = ZTZ^T,
\end{displaymath}
 -->


<I>A</I> = <I>ZTZ</I><SUP><I>T</I></SUP>,
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Z</I> is an orthogonal matrix and <I>T</I> is an upper quasi-triangular matrix
with 1-by-1 and 2-by-2 diagonal blocks, the 2-by-2 blocks
corresponding to complex conjugate pairs of eigenvalues of <I>A</I>. In the complex
case the Schur factorization is
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = ZTZ^H,
\end{displaymath}
 -->


<I>A</I> = <I>ZTZ</I><SUP><I>H</I></SUP>,
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Z</I> is unitary and <I>T</I> is a complex upper triangular matrix.

<P>
The columns of <I>Z</I> are called the <B>Schur vectors</B><A NAME="1546"></A>.
For each <I>k</I>

<!-- MATH
 $(1 \leq k \leq n)$
 -->
<IMG
 WIDTH="93" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img33.png"
 ALT="$(1 \leq k \leq n)$">,
the first <I>k</I> columns of <I>Z</I> form an orthonormal
<A NAME="1547"></A>
basis for the <B>invariant subspace</B> corresponding to the
first <I>k</I> eigenvalues on the diagonal of <I>T</I>. Because this
basis is orthonormal, it is preferable in many
applications to compute Schur vectors rather than
eigenvectors. It is possible to order the Schur
factorization so that any desired set of <I>k</I> eigenvalues
occupy the <I>k</I> leading positions on the diagonal of <I>T</I>.

<P>
Two pairs of drivers<A NAME="1549"></A> are provided, one pair focusing on the Schur
factorization, and the other pair on the eigenvalues and eigenvectors
as shown in Table&nbsp;<A HREF="node32.html#tabdriveseig">2.5</A>:

<P>

<UL><LI>xGEES<A NAME="1552"></A><A NAME="1553"></A><A NAME="1554"></A><A NAME="1555"></A>: a simple driver that computes all or part of the Schur
factorization of <I>A</I>, with optional ordering of the eigenvalues;
<A NAME="1556"></A>

<P>

<LI>xGEESX<A NAME="1557"></A><A NAME="1558"></A><A NAME="1559"></A><A NAME="1560"></A>: an expert driver that can additionally compute condition
numbers for the average of a selected subset of the eigenvalues, and for
the corresponding right invariant subspace;

<P>

<LI>xGEEV<A NAME="1561"></A><A NAME="1562"></A><A NAME="1563"></A><A NAME="1564"></A>: a simple driver that computes all the eigenvalues of <I>A</I>,
and (optionally) the right or left eigenvectors (or both);

<P>

<LI>xGEEVX<A NAME="1565"></A><A NAME="1566"></A><A NAME="1567"></A><A NAME="1568"></A>: an expert driver that can additionally balance the
matrix to improve the conditioning of the eigenvalues and eigenvectors,
and compute condition numbers for the eigenvalues or right eigenvectors
(or both).

<P>

</UL>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4562"
 HREF="node32.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4556"
 HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4550"
 HREF="node30.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4558"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4560"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4563"
 HREF="node32.html">Singular Value Decomposition (SVD)</A>
<B> Up:</B> <A NAME="tex2html4557"
 HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4551"
 HREF="node30.html">Symmetric Eigenproblems (SEP)</A>
 &nbsp <B>  <A NAME="tex2html4559"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4561"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>