1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Singular Value Decomposition (SVD)</TITLE>
<META NAME="description" CONTENT="Singular Value Decomposition (SVD)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node31.html">
<LINK REL="up" HREF="node29.html">
<LINK REL="next" HREF="node33.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4574"
HREF="node33.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4568"
HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4564"
HREF="node31.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4570"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4572"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4575"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Up:</B> <A NAME="tex2html4569"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4565"
HREF="node31.html">Nonsymmetric Eigenproblems (NEP)</A>
  <B> <A NAME="tex2html4571"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4573"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03234300000000000000">
Singular Value Decomposition (SVD)</A>
</H3>
<P>
The <B>singular value decomposition</B> of an <I>m</I>-by-<I>n</I> matrix <I>A</I> is given by
<A NAME="1572"></A><A NAME="1573"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = U \Sigma V ^T, \quad (A=U\Sigma V ^H \quad \mbox{in the complex case})
\end{displaymath}
-->
<IMG
WIDTH="381" HEIGHT="31" BORDER="0"
SRC="img34.png"
ALT="\begin{displaymath}
A = U \Sigma V ^T, \quad (A=U\Sigma V ^H \quad \mbox{in the complex case})
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>U</I> and <I>V</I> are orthogonal (unitary)
and <IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img35.png"
ALT="$\Sigma$">
is an <I>m</I>-by-<I>n</I> diagonal matrix with real
diagonal elements, <IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$\sigma _ i $">,
such that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\min (m,n)} \ge 0 .
\end{displaymath}
-->
<IMG
WIDTH="229" HEIGHT="33" BORDER="0"
SRC="img37.png"
ALT="\begin{displaymath}
\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\min (m,n)} \ge 0 .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The <IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$\sigma _ i $">
are the <B>singular values</B> of <I>A</I> and the
first min(<I>m</I>,<I>n</I>) columns of <I>U</I> and <I>V</I>
are the <B>left</B> and <B>right singular vectors</B> of <I>A</I>.
<A NAME="1579"></A><A NAME="1580"></A>
<P>
The singular values and singular vectors satisfy:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A v_i = \sigma_i u_i \quad \mbox{and} \quad
A^T u_i = \sigma_i v_i \quad ({\rm or} \quad
A^H u_i = \sigma_i v_i \quad )
\end{displaymath}
-->
<IMG
WIDTH="409" HEIGHT="31" BORDER="0"
SRC="img38.png"
ALT="\begin{displaymath}
A v_i = \sigma_i u_i \quad \mbox{and} \quad
A^T u_i = \sigma_i v_i \quad ({\rm or} \quad
A^H u_i = \sigma_i v_i \quad )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>u</I><SUB><I>i</I></SUB> and <I>v</I><SUB><I>i</I></SUB> are the <I>i</I><SUP><I>th</I></SUP> columns of <I>U</I> and <I>V</I> respectively.
<P>
There are two types of driver routines for the SVD. Originally LAPACK had
just the simple driver described below, and the other one was added after
an improved algorithm was discovered.
<P>
<UL><LI>a <B>simple</B> driver
xGESVD<A NAME="1586"></A><A NAME="1587"></A><A NAME="1588"></A><A NAME="1589"></A>
computes all the singular values and (optionally) left and/or right
singular vectors.
<LI>a <B>divide and conquer</B> driver <A NAME="1591"></A>
xGESDD<A NAME="1592"></A><A NAME="1593"></A><A NAME="1594"></A><A NAME="1595"></A> <A NAME="1596"></A> solves the same problem
as the simple driver. It is much faster than the simple driver
for large matrices, but uses more workspace. The name divide-and-conquer
refers to the underlying algorithm
(see sections <A HREF="node48.html#subseccompsep">2.4.4</A> and <A HREF="node70.html#subsecblockeig">3.4.3</A>).
</UL>
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabdriveseig"></A>
<DIV ALIGN="CENTER">
<A NAME="1601"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.5:</STRONG>
Driver routines for standard eigenvalue and singular value problems</CAPTION>
<TR><TD ALIGN="CENTER">Type of</TD>
<TD ALIGN="LEFT">Function and storage scheme</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="CENTER">problem</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="CENTER">SEP</TD>
<TD ALIGN="LEFT">simple driver</TD>
<TD ALIGN="LEFT">SSYEV<A NAME="1613"></A></TD>
<TD ALIGN="LEFT">CHEEV<A NAME="1614"></A></TD>
<TD ALIGN="LEFT">DSYEV<A NAME="1615"></A></TD>
<TD ALIGN="LEFT">ZHEEV<A NAME="1616"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSYEVD<A NAME="1617"></A></TD>
<TD ALIGN="LEFT">CHEEVD<A NAME="1618"></A></TD>
<TD ALIGN="LEFT">DSYEVD<A NAME="1619"></A></TD>
<TD ALIGN="LEFT">ZHEEVD<A NAME="1620"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">expert driver</TD>
<TD ALIGN="LEFT">SSYEVX<A NAME="1621"></A></TD>
<TD ALIGN="LEFT">CHEEVX<A NAME="1622"></A></TD>
<TD ALIGN="LEFT">DSYEVX<A NAME="1623"></A></TD>
<TD ALIGN="LEFT">ZHEEVX<A NAME="1624"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">RRR driver</TD>
<TD ALIGN="LEFT">SSYEVR<A NAME="1625"></A></TD>
<TD ALIGN="LEFT">CHEEVR<A NAME="1626"></A></TD>
<TD ALIGN="LEFT">DSYEVR<A NAME="1627"></A></TD>
<TD ALIGN="LEFT">ZHEEVR<A NAME="1628"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">simple driver (packed storage)</TD>
<TD ALIGN="LEFT">SSPEV<A NAME="1629"></A></TD>
<TD ALIGN="LEFT">CHPEV<A NAME="1630"></A></TD>
<TD ALIGN="LEFT">DSPEV<A NAME="1631"></A></TD>
<TD ALIGN="LEFT">ZHPEV<A NAME="1632"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSPEVD<A NAME="1633"></A></TD>
<TD ALIGN="LEFT">CHPEVD<A NAME="1634"></A></TD>
<TD ALIGN="LEFT">DSPEVD<A NAME="1635"></A></TD>
<TD ALIGN="LEFT">ZHPEVD<A NAME="1636"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">(packed storage)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">expert driver (packed storage)</TD>
<TD ALIGN="LEFT">SSPEVX<A NAME="1638"></A></TD>
<TD ALIGN="LEFT">CHPEVX<A NAME="1639"></A></TD>
<TD ALIGN="LEFT">DSPEVX<A NAME="1640"></A></TD>
<TD ALIGN="LEFT">ZHPEVX<A NAME="1641"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">simple driver (band matrix)</TD>
<TD ALIGN="LEFT">SSBEV<A NAME="1642"></A></TD>
<TD ALIGN="LEFT">CHBEV<A NAME="1643"></A></TD>
<TD ALIGN="LEFT">DSBEV<A NAME="1644"></A></TD>
<TD ALIGN="LEFT">ZHBEV<A NAME="1645"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSBEVD<A NAME="1646"></A></TD>
<TD ALIGN="LEFT">CHBEVD<A NAME="1647"></A></TD>
<TD ALIGN="LEFT">DSBEVD<A NAME="1648"></A></TD>
<TD ALIGN="LEFT">ZHBEVD<A NAME="1649"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">(band matrix)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">expert driver (band matrix)</TD>
<TD ALIGN="LEFT">SSBEVX<A NAME="1651"></A></TD>
<TD ALIGN="LEFT">CHBEVX<A NAME="1652"></A></TD>
<TD ALIGN="LEFT">DSBEVX<A NAME="1653"></A></TD>
<TD ALIGN="LEFT">ZHBEVX<A NAME="1654"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">simple driver (tridiagonal matrix)</TD>
<TD ALIGN="LEFT">SSTEV<A NAME="1655"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">DSTEV<A NAME="1656"></A></TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSTEVD<A NAME="1657"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">DSTEVD<A NAME="1658"></A></TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">(tridiagonal matrix)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">expert driver (tridiagonal matrix)</TD>
<TD ALIGN="LEFT">SSTEVX<A NAME="1660"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">DSTEVX<A NAME="1661"></A></TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">RRR driver (tridiagonal matrix)</TD>
<TD ALIGN="LEFT">SSTEVR<A NAME="1662"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">DSTEVR<A NAME="1663"></A></TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="CENTER">NEP</TD>
<TD ALIGN="LEFT">simple driver for Schur factorization</TD>
<TD ALIGN="LEFT">SGEES<A NAME="1664"></A></TD>
<TD ALIGN="LEFT">CGEES<A NAME="1665"></A></TD>
<TD ALIGN="LEFT">DGEES<A NAME="1666"></A></TD>
<TD ALIGN="LEFT">ZGEES<A NAME="1667"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">expert driver for Schur factorization</TD>
<TD ALIGN="LEFT">SGEESX<A NAME="1668"></A></TD>
<TD ALIGN="LEFT">CGEESX<A NAME="1669"></A></TD>
<TD ALIGN="LEFT">DGEESX<A NAME="1670"></A></TD>
<TD ALIGN="LEFT">ZGEESX<A NAME="1671"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">simple driver for eigenvalues/vectors</TD>
<TD ALIGN="LEFT">SGEEV<A NAME="1672"></A></TD>
<TD ALIGN="LEFT">CGEEV<A NAME="1673"></A></TD>
<TD ALIGN="LEFT">DGEEV<A NAME="1674"></A></TD>
<TD ALIGN="LEFT">ZGEEV<A NAME="1675"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">expert driver for eigenvalues/vectors</TD>
<TD ALIGN="LEFT">SGEEVX<A NAME="1676"></A></TD>
<TD ALIGN="LEFT">CGEEVX<A NAME="1677"></A></TD>
<TD ALIGN="LEFT">DGEEVX<A NAME="1678"></A></TD>
<TD ALIGN="LEFT">ZGEEVX<A NAME="1679"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">SVD</TD>
<TD ALIGN="LEFT">simple driver</TD>
<TD ALIGN="LEFT">SGESVD<A NAME="1680"></A></TD>
<TD ALIGN="LEFT">CGESVD<A NAME="1681"></A></TD>
<TD ALIGN="LEFT">DGESVD<A NAME="1682"></A></TD>
<TD ALIGN="LEFT">ZGESVD<A NAME="1683"></A></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SGESDD<A NAME="1684"></A></TD>
<TD ALIGN="LEFT">CGESDD<A NAME="1685"></A></TD>
<TD ALIGN="LEFT">DGESDD<A NAME="1686"></A></TD>
<TD ALIGN="LEFT">ZGESDD<A NAME="1687"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4574"
HREF="node33.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4568"
HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4564"
HREF="node31.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4570"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4572"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4575"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Up:</B> <A NAME="tex2html4569"
HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4565"
HREF="node31.html">Nonsymmetric Eigenproblems (NEP)</A>
  <B> <A NAME="tex2html4571"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4573"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|