File: node32.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (398 lines) | stat: -rw-r--r-- 13,201 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Singular Value Decomposition (SVD)</TITLE>
<META NAME="description" CONTENT="Singular Value Decomposition (SVD)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node31.html">
<LINK REL="up" HREF="node29.html">
<LINK REL="next" HREF="node33.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4574"
 HREF="node33.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4568"
 HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4564"
 HREF="node31.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4570"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4572"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4575"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Up:</B> <A NAME="tex2html4569"
 HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4565"
 HREF="node31.html">Nonsymmetric Eigenproblems (NEP)</A>
 &nbsp <B>  <A NAME="tex2html4571"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4573"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03234300000000000000">
Singular Value Decomposition (SVD)</A>
</H3>

<P>
The <B>singular value decomposition</B> of an <I>m</I>-by-<I>n</I> matrix <I>A</I> is given by
<A NAME="1572"></A><A NAME="1573"></A>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = U \Sigma V ^T, \quad (A=U\Sigma V ^H \quad \mbox{in the complex case})
\end{displaymath}
 -->


<IMG
 WIDTH="381" HEIGHT="31" BORDER="0"
 SRC="img34.png"
 ALT="\begin{displaymath}
A = U \Sigma V ^T, \quad (A=U\Sigma V ^H \quad \mbox{in the complex case})
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>U</I> and <I>V</I> are orthogonal (unitary)
and <IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img35.png"
 ALT="$\Sigma$">
is an <I>m</I>-by-<I>n</I> diagonal matrix with real
diagonal elements, <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">,
such that
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\min (m,n)} \ge 0 .
\end{displaymath}
 -->


<IMG
 WIDTH="229" HEIGHT="33" BORDER="0"
 SRC="img37.png"
 ALT="\begin{displaymath}
\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\min (m,n)} \ge 0 .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">
are the <B>singular values</B> of <I>A</I> and the
first min(<I>m</I>,<I>n</I>) columns of <I>U</I> and <I>V</I>
are the <B>left</B> and <B>right singular vectors</B> of <I>A</I>.
<A NAME="1579"></A><A NAME="1580"></A>

<P>
The singular values and singular vectors satisfy:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A v_i = \sigma_i u_i \quad \mbox{and} \quad
A^T u_i = \sigma_i v_i \quad ({\rm or} \quad
A^H u_i = \sigma_i v_i \quad )
\end{displaymath}
 -->


<IMG
 WIDTH="409" HEIGHT="31" BORDER="0"
 SRC="img38.png"
 ALT="\begin{displaymath}
A v_i = \sigma_i u_i \quad \mbox{and} \quad
A^T u_i = \sigma_i v_i \quad ({\rm or} \quad
A^H u_i = \sigma_i v_i \quad )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>u</I><SUB><I>i</I></SUB> and <I>v</I><SUB><I>i</I></SUB> are the <I>i</I><SUP><I>th</I></SUP> columns of <I>U</I> and <I>V</I> respectively.

<P>
There are two types of driver routines for the SVD.  Originally LAPACK had
just the simple driver described below, and the other one was added after
an improved algorithm was discovered.

<P>

<UL><LI>a <B>simple</B> driver
xGESVD<A NAME="1586"></A><A NAME="1587"></A><A NAME="1588"></A><A NAME="1589"></A>
computes all the singular values and (optionally) left and/or right
singular vectors.

<LI>a <B>divide and conquer</B> driver <A NAME="1591"></A>
xGESDD<A NAME="1592"></A><A NAME="1593"></A><A NAME="1594"></A><A NAME="1595"></A> <A NAME="1596"></A> solves the same problem
as the simple driver.  It is much faster than the simple driver
for large matrices, but uses more workspace. The name divide-and-conquer
refers to the underlying algorithm
(see sections <A HREF="node48.html#subseccompsep">2.4.4</A> and <A HREF="node70.html#subsecblockeig">3.4.3</A>).

</UL>

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabdriveseig"></A>
<DIV ALIGN="CENTER">
<A NAME="1601"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.5:</STRONG>
Driver routines for standard eigenvalue and singular value problems</CAPTION>
<TR><TD ALIGN="CENTER">Type of</TD>
<TD ALIGN="LEFT">Function and storage scheme</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="CENTER">problem</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="CENTER">SEP</TD>
<TD ALIGN="LEFT">simple driver</TD>
<TD ALIGN="LEFT">SSYEV<A NAME="1613"></A></TD>
<TD ALIGN="LEFT">CHEEV<A NAME="1614"></A></TD>
<TD ALIGN="LEFT">DSYEV<A NAME="1615"></A></TD>
<TD ALIGN="LEFT">ZHEEV<A NAME="1616"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSYEVD<A NAME="1617"></A></TD>
<TD ALIGN="LEFT">CHEEVD<A NAME="1618"></A></TD>
<TD ALIGN="LEFT">DSYEVD<A NAME="1619"></A></TD>
<TD ALIGN="LEFT">ZHEEVD<A NAME="1620"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">expert driver</TD>
<TD ALIGN="LEFT">SSYEVX<A NAME="1621"></A></TD>
<TD ALIGN="LEFT">CHEEVX<A NAME="1622"></A></TD>
<TD ALIGN="LEFT">DSYEVX<A NAME="1623"></A></TD>
<TD ALIGN="LEFT">ZHEEVX<A NAME="1624"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">RRR driver</TD>
<TD ALIGN="LEFT">SSYEVR<A NAME="1625"></A></TD>
<TD ALIGN="LEFT">CHEEVR<A NAME="1626"></A></TD>
<TD ALIGN="LEFT">DSYEVR<A NAME="1627"></A></TD>
<TD ALIGN="LEFT">ZHEEVR<A NAME="1628"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">simple driver (packed storage)</TD>
<TD ALIGN="LEFT">SSPEV<A NAME="1629"></A></TD>
<TD ALIGN="LEFT">CHPEV<A NAME="1630"></A></TD>
<TD ALIGN="LEFT">DSPEV<A NAME="1631"></A></TD>
<TD ALIGN="LEFT">ZHPEV<A NAME="1632"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSPEVD<A NAME="1633"></A></TD>
<TD ALIGN="LEFT">CHPEVD<A NAME="1634"></A></TD>
<TD ALIGN="LEFT">DSPEVD<A NAME="1635"></A></TD>
<TD ALIGN="LEFT">ZHPEVD<A NAME="1636"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">(packed storage)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">expert driver (packed storage)</TD>
<TD ALIGN="LEFT">SSPEVX<A NAME="1638"></A></TD>
<TD ALIGN="LEFT">CHPEVX<A NAME="1639"></A></TD>
<TD ALIGN="LEFT">DSPEVX<A NAME="1640"></A></TD>
<TD ALIGN="LEFT">ZHPEVX<A NAME="1641"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">simple driver (band matrix)</TD>
<TD ALIGN="LEFT">SSBEV<A NAME="1642"></A></TD>
<TD ALIGN="LEFT">CHBEV<A NAME="1643"></A></TD>
<TD ALIGN="LEFT">DSBEV<A NAME="1644"></A></TD>
<TD ALIGN="LEFT">ZHBEV<A NAME="1645"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSBEVD<A NAME="1646"></A></TD>
<TD ALIGN="LEFT">CHBEVD<A NAME="1647"></A></TD>
<TD ALIGN="LEFT">DSBEVD<A NAME="1648"></A></TD>
<TD ALIGN="LEFT">ZHBEVD<A NAME="1649"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">(band matrix)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">expert driver (band matrix)</TD>
<TD ALIGN="LEFT">SSBEVX<A NAME="1651"></A></TD>
<TD ALIGN="LEFT">CHBEVX<A NAME="1652"></A></TD>
<TD ALIGN="LEFT">DSBEVX<A NAME="1653"></A></TD>
<TD ALIGN="LEFT">ZHBEVX<A NAME="1654"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">simple driver (tridiagonal matrix)</TD>
<TD ALIGN="LEFT">SSTEV<A NAME="1655"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DSTEV<A NAME="1656"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SSTEVD<A NAME="1657"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DSTEVD<A NAME="1658"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">(tridiagonal matrix)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">expert driver (tridiagonal matrix)</TD>
<TD ALIGN="LEFT">SSTEVX<A NAME="1660"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DSTEVX<A NAME="1661"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">RRR driver (tridiagonal matrix)</TD>
<TD ALIGN="LEFT">SSTEVR<A NAME="1662"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DSTEVR<A NAME="1663"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="CENTER">NEP</TD>
<TD ALIGN="LEFT">simple driver for Schur factorization</TD>
<TD ALIGN="LEFT">SGEES<A NAME="1664"></A></TD>
<TD ALIGN="LEFT">CGEES<A NAME="1665"></A></TD>
<TD ALIGN="LEFT">DGEES<A NAME="1666"></A></TD>
<TD ALIGN="LEFT">ZGEES<A NAME="1667"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">expert driver for Schur factorization</TD>
<TD ALIGN="LEFT">SGEESX<A NAME="1668"></A></TD>
<TD ALIGN="LEFT">CGEESX<A NAME="1669"></A></TD>
<TD ALIGN="LEFT">DGEESX<A NAME="1670"></A></TD>
<TD ALIGN="LEFT">ZGEESX<A NAME="1671"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">simple driver for eigenvalues/vectors</TD>
<TD ALIGN="LEFT">SGEEV<A NAME="1672"></A></TD>
<TD ALIGN="LEFT">CGEEV<A NAME="1673"></A></TD>
<TD ALIGN="LEFT">DGEEV<A NAME="1674"></A></TD>
<TD ALIGN="LEFT">ZGEEV<A NAME="1675"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">expert driver for eigenvalues/vectors</TD>
<TD ALIGN="LEFT">SGEEVX<A NAME="1676"></A></TD>
<TD ALIGN="LEFT">CGEEVX<A NAME="1677"></A></TD>
<TD ALIGN="LEFT">DGEEVX<A NAME="1678"></A></TD>
<TD ALIGN="LEFT">ZGEEVX<A NAME="1679"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">SVD</TD>
<TD ALIGN="LEFT">simple driver</TD>
<TD ALIGN="LEFT">SGESVD<A NAME="1680"></A></TD>
<TD ALIGN="LEFT">CGESVD<A NAME="1681"></A></TD>
<TD ALIGN="LEFT">DGESVD<A NAME="1682"></A></TD>
<TD ALIGN="LEFT">ZGESVD<A NAME="1683"></A></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT">divide and conquer driver</TD>
<TD ALIGN="LEFT">SGESDD<A NAME="1684"></A></TD>
<TD ALIGN="LEFT">CGESDD<A NAME="1685"></A></TD>
<TD ALIGN="LEFT">DGESDD<A NAME="1686"></A></TD>
<TD ALIGN="LEFT">ZGESDD<A NAME="1687"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4574"
 HREF="node33.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4568"
 HREF="node29.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4564"
 HREF="node31.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4570"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4572"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4575"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Up:</B> <A NAME="tex2html4569"
 HREF="node29.html">Standard Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4565"
 HREF="node31.html">Nonsymmetric Eigenproblems (NEP)</A>
 &nbsp <B>  <A NAME="tex2html4571"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4573"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>