File: node34.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (215 lines) | stat: -rw-r--r-- 6,540 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Symmetric Definite Eigenproblems (GSEP)</TITLE>
<META NAME="description" CONTENT="Generalized Symmetric Definite Eigenproblems (GSEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node35.html">
<LINK REL="previous" HREF="node33.html">
<LINK REL="up" HREF="node33.html">
<LINK REL="next" HREF="node35.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4603"
 HREF="node35.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4597"
 HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4591"
 HREF="node33.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4599"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4601"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4604"
 HREF="node35.html">Generalized Nonsymmetric Eigenproblems (GNEP)</A>
<B> Up:</B> <A NAME="tex2html4598"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4592"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
 &nbsp <B>  <A NAME="tex2html4600"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4602"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03235100000000000000"></A>
<A NAME="secGSEP"></A>
<BR>
Generalized Symmetric Definite Eigenproblems (GSEP)
</H3>

<P>
<A NAME="1695"></A><A NAME="1696"></A>
Drivers are provided to compute all the eigenvalues and
(optionally) the eigenvectors of the following types of problems:

<P>
<DL COMPACT>
<DT>1.
<DD>
<!-- MATH
 $A z = \lambda B z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img39.png"
 ALT="$A z = \lambda B z$">
<P>
<DT>2.
<DD>
<!-- MATH
 $A B z = \lambda z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img40.png"
 ALT="$A B z = \lambda z$">

<P>
<DT>3.
<DD>
<!-- MATH
 $B A z = \lambda z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img41.png"
 ALT="$B A z = \lambda z$">

<P>
</DL>

<P>
where <I>A</I> and <I>B</I> are symmetric or Hermitian and <I>B</I> is positive definite.
For all these problems the eigenvalues<A NAME="1699"></A> <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
are real. The matrices <I>Z</I>
of computed eigenvectors<A NAME="1700"></A> satisfy

<!-- MATH
 $Z^T A Z = \Lambda$
 -->
<IMG
 WIDTH="90" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img42.png"
 ALT="$Z^T A Z = \Lambda$">
(problem types 1 and 3) or 
<!-- MATH
 $Z^{-1} A Z^{-T} = I$
 -->
<I>Z</I><SUP>-1</SUP> <I>A Z</I><SUP>-<I>T</I></SUP> = <I>I</I>
(problem type 2), where <IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img28.png"
 ALT="$\Lambda$">
is a diagonal matrix with the eigenvalues
on the diagonal. <I>Z</I> also satisfies
<I>Z</I><SUP><I>T</I></SUP> <I>B Z</I> = <I>I</I> (problem types 1 and 2) or 
<!-- MATH
 $Z^T B^{-1} Z = I$
 -->
<I>Z</I><SUP><I>T</I></SUP> <I>B</I><SUP>-1</SUP> <I>Z</I> = <I>I</I> (problem type 3).

<P>
There are three types of driver routines for generalized symmetric and
Hermitian eigenproblems.  Originally LAPACK had just the simple and expert
drivers described below, and the other one was added after an improved algorithm
was discovered.

<P>

<UL><LI>a <B>simple</B> driver (name ending -GV)<A NAME="1706"></A>
      computes all the eigenvalues and (optionally) eigenvectors.

<P>

<LI>an <B>expert</B> driver
      (name ending -GVX)<A NAME="1708"></A> computes
      all or a selected subset of the eigenvalues and (optionally) eigenvectors.
      If few enough eigenvalues or eigenvectors are desired, the expert driver
      is faster than the simple driver.

<P>

<LI>a <B>divide-and-conquer</B> driver
      (name ending -GVD)<A NAME="1710"></A> solves the
      same problem as the simple driver. It is much faster than the simple
      driver for large matrices, but uses more workspace. The name
      divide-and-conquer<A NAME="1711"></A> refers to the underlying
      algorithm (see sections <A HREF="node48.html#subseccompsep">2.4.4</A> and <A HREF="node70.html#subsecblockeig">3.4.3</A>).

<P>

</UL>

<P>
Different driver routines are provided to take advantage of special
structure or storage of the matrices <I>A</I> and <I>B</I>, as shown in
Table&nbsp;<A HREF="node36.html#tabdrivegeig">2.6</A>.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4603"
 HREF="node35.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4597"
 HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4591"
 HREF="node33.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4599"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4601"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4604"
 HREF="node35.html">Generalized Nonsymmetric Eigenproblems (GNEP)</A>
<B> Up:</B> <A NAME="tex2html4598"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4592"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
 &nbsp <B>  <A NAME="tex2html4600"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4602"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>