1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Symmetric Definite Eigenproblems (GSEP)</TITLE>
<META NAME="description" CONTENT="Generalized Symmetric Definite Eigenproblems (GSEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node35.html">
<LINK REL="previous" HREF="node33.html">
<LINK REL="up" HREF="node33.html">
<LINK REL="next" HREF="node35.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4603"
HREF="node35.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4597"
HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4591"
HREF="node33.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4599"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4601"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4604"
HREF="node35.html">Generalized Nonsymmetric Eigenproblems (GNEP)</A>
<B> Up:</B> <A NAME="tex2html4598"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4592"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
  <B> <A NAME="tex2html4600"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4602"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03235100000000000000"></A>
<A NAME="secGSEP"></A>
<BR>
Generalized Symmetric Definite Eigenproblems (GSEP)
</H3>
<P>
<A NAME="1695"></A><A NAME="1696"></A>
Drivers are provided to compute all the eigenvalues and
(optionally) the eigenvectors of the following types of problems:
<P>
<DL COMPACT>
<DT>1.
<DD>
<!-- MATH
$A z = \lambda B z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img39.png"
ALT="$A z = \lambda B z$">
<P>
<DT>2.
<DD>
<!-- MATH
$A B z = \lambda z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png"
ALT="$A B z = \lambda z$">
<P>
<DT>3.
<DD>
<!-- MATH
$B A z = \lambda z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$B A z = \lambda z$">
<P>
</DL>
<P>
where <I>A</I> and <I>B</I> are symmetric or Hermitian and <I>B</I> is positive definite.
For all these problems the eigenvalues<A NAME="1699"></A> <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
are real. The matrices <I>Z</I>
of computed eigenvectors<A NAME="1700"></A> satisfy
<!-- MATH
$Z^T A Z = \Lambda$
-->
<IMG
WIDTH="90" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img42.png"
ALT="$Z^T A Z = \Lambda$">
(problem types 1 and 3) or
<!-- MATH
$Z^{-1} A Z^{-T} = I$
-->
<I>Z</I><SUP>-1</SUP> <I>A Z</I><SUP>-<I>T</I></SUP> = <I>I</I>
(problem type 2), where <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$\Lambda$">
is a diagonal matrix with the eigenvalues
on the diagonal. <I>Z</I> also satisfies
<I>Z</I><SUP><I>T</I></SUP> <I>B Z</I> = <I>I</I> (problem types 1 and 2) or
<!-- MATH
$Z^T B^{-1} Z = I$
-->
<I>Z</I><SUP><I>T</I></SUP> <I>B</I><SUP>-1</SUP> <I>Z</I> = <I>I</I> (problem type 3).
<P>
There are three types of driver routines for generalized symmetric and
Hermitian eigenproblems. Originally LAPACK had just the simple and expert
drivers described below, and the other one was added after an improved algorithm
was discovered.
<P>
<UL><LI>a <B>simple</B> driver (name ending -GV)<A NAME="1706"></A>
computes all the eigenvalues and (optionally) eigenvectors.
<P>
<LI>an <B>expert</B> driver
(name ending -GVX)<A NAME="1708"></A> computes
all or a selected subset of the eigenvalues and (optionally) eigenvectors.
If few enough eigenvalues or eigenvectors are desired, the expert driver
is faster than the simple driver.
<P>
<LI>a <B>divide-and-conquer</B> driver
(name ending -GVD)<A NAME="1710"></A> solves the
same problem as the simple driver. It is much faster than the simple
driver for large matrices, but uses more workspace. The name
divide-and-conquer<A NAME="1711"></A> refers to the underlying
algorithm (see sections <A HREF="node48.html#subseccompsep">2.4.4</A> and <A HREF="node70.html#subsecblockeig">3.4.3</A>).
<P>
</UL>
<P>
Different driver routines are provided to take advantage of special
structure or storage of the matrices <I>A</I> and <I>B</I>, as shown in
Table <A HREF="node36.html#tabdrivegeig">2.6</A>.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4603"
HREF="node35.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4597"
HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4591"
HREF="node33.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4599"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4601"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4604"
HREF="node35.html">Generalized Nonsymmetric Eigenproblems (GNEP)</A>
<B> Up:</B> <A NAME="tex2html4598"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4592"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
  <B> <A NAME="tex2html4600"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4602"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|