1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Nonsymmetric Eigenproblems (GNEP)</TITLE>
<META NAME="description" CONTENT="Generalized Nonsymmetric Eigenproblems (GNEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node36.html">
<LINK REL="previous" HREF="node34.html">
<LINK REL="up" HREF="node33.html">
<LINK REL="next" HREF="node36.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4617"
HREF="node36.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4611"
HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4605"
HREF="node34.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4613"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4615"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4618"
HREF="node36.html">Generalized Singular Value Decomposition</A>
<B> Up:</B> <A NAME="tex2html4612"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4606"
HREF="node34.html">Generalized Symmetric Definite Eigenproblems</A>
  <B> <A NAME="tex2html4614"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4616"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03235200000000000000"></A>
<A NAME="sec_gnep_driver"></A>
<BR>
Generalized Nonsymmetric Eigenproblems (GNEP)
</H3>
<P>
<A NAME="1718"></A><A NAME="1719"></A>
Given a matrix pair (<I>A</I>, <I>B</I>), where <I>A</I> and <I>B</I> are square <I>n</I> x <I>n</I>
matrices, the <B>generalized nonsymmetric eigenvalue problem</B> is to find<A NAME="1721"></A><A NAME="1722"></A>
the <B>eigenvalues</B> <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
<A NAME="1724"></A> and corresponding
<B>eigenvectors</B> <A NAME="1726"></A>
<IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img43.png"
ALT="$x \not= 0$">
such that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A x = \lambda B x ,
\end{displaymath}
-->
<IMG
WIDTH="84" HEIGHT="30" BORDER="0"
SRC="img44.png"
ALT="\begin{displaymath}
A x = \lambda B x ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<I>or</I> to find the eigenvalues <IMG
WIDTH="15" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img45.png"
ALT="$\mu$">
and corresponding eigenvectors
<IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img46.png"
ALT="$y \not= 0$">
such that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\mu A y = B y.
\end{displaymath}
-->
<IMG
WIDTH="83" HEIGHT="30" BORDER="0"
SRC="img47.png"
ALT="\begin{displaymath}
\mu A y = B y.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Note that these problems are equivalent with
<!-- MATH
$\mu = 1/\lambda$
-->
<IMG
WIDTH="66" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img48.png"
ALT="$\mu = 1/\lambda$">
and <I>x</I>=<I>y</I>
if neither <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
nor <IMG
WIDTH="15" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img45.png"
ALT="$\mu$">
is zero. In order to deal with the case
that <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
or <IMG
WIDTH="15" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img45.png"
ALT="$\mu$">
is zero, or nearly so, the LAPACK routines return
two values, <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">,
for each eigenvalue, such that
<!-- MATH
$\lambda = \alpha/\beta$
-->
<IMG
WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img51.png"
ALT="$\lambda = \alpha/\beta$">
and
<!-- MATH
$\mu = \beta/\alpha$
-->
<IMG
WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img52.png"
ALT="$\mu = \beta/\alpha$">.
<BR>
<P>
More precisely, <I>x</I> and <I>y</I> are called <B>right eigenvectors</B>.
<A NAME="1729"></A>
Vectors <IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img53.png"
ALT="$u \not= 0$">
or <IMG
WIDTH="45" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img54.png"
ALT="$v \not= 0$">
satisfying
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
u^H A = \lambda u^H B \quad\mbox{or}\quad \mu v^H A = v^H B
\end{displaymath}
-->
<IMG
WIDTH="260" HEIGHT="30" BORDER="0"
SRC="img55.png"
ALT="\begin{displaymath}
u^H A = \lambda u^H B \quad\mbox{or}\quad \mu v^H A = v^H B
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
are called <B>left eigenvectors</B>.
<A NAME="1732"></A>
<P>
Sometimes the following, equivalent notation is used to refer to the
generalized eigenproblem for the pair (<I>A</I>,<I>B</I>): The object <IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$A - \lambda B$">,
where <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
is an indeterminate, is called a <B>matrix pencil</B>, or
just <B>pencil</B><A NAME="1735"></A>.
So one can also refer to the generalized eigenvalues
and eigenvectors of the pencil <IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$A - \lambda B$">.
<P>
If the determinant of <IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$A - \lambda B$">
is identically
zero for all values of <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">,
the eigenvalue problem is called <B>singular</B>; otherwise it is <B>regular</B>.
<A NAME="1738"></A>
Singularity of (<I>A</I>,<I>B</I>) is signaled by some
<!-- MATH
$\alpha = \beta = 0$
-->
<IMG
WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img57.png"
ALT="$\alpha = \beta = 0$">
(in the presence of roundoff, <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
may be very small).
In this case, the eigenvalue problem is very ill-conditioned,
<A NAME="1739"></A>
and in fact some of the other nonzero values of <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
may be indeterminate (see section <A HREF="node105.html#sec_singular">4.11.1.4</A> for further
discussion) [<A
HREF="node151.html#stewart72">93</A>,<A
HREF="node151.html#wilkinson79">105</A>,<A
HREF="node151.html#demmelkagstrom87">29</A>].
The current routines in LAPACK are intended only for regular matrix pencils.
<P>
The generalized nonsymmetric eigenvalue problem can be solved via the
<B>generalized Schur decomposition</B>
<A NAME="1743"></A>
of the matrix pair (<I>A</I>, <I>B</I>), defined in the <I>real case</I> as
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = Q S Z^T, \quad B = Q T Z^T
\end{displaymath}
-->
<IMG
WIDTH="198" HEIGHT="30" BORDER="0"
SRC="img58.png"
ALT="\begin{displaymath}
A = Q S Z^T, \quad B = Q T Z^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Q</I> and <I>Z</I> are orthogonal matrices, <I>T</I> is upper triangular,
and <I>S</I> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
blocks, the 2-by-2 blocks corresponding to complex conjugate pairs of eigenvalues
of (<I>A</I>, <I>B</I>). In the <I>complex case</I>, the generalized Schur decomposition is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = Q S Z^H, \quad B = Q T Z^H
\end{displaymath}
-->
<IMG
WIDTH="202" HEIGHT="30" BORDER="0"
SRC="img59.png"
ALT="\begin{displaymath}
A = Q S Z^H, \quad B = Q T Z^H
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Q</I> and <I>Z</I> are unitary and <I>S</I> and <I>T</I> are both upper triangular.
<BR>
<P>
The columns of <I>Q</I> and <I>Z</I> are called <B>left and right generalized Schur
vectors</B>
<A NAME="1747"></A><A NAME="1748"></A>
and span pairs of <B>deflating subspaces</B> of <I>A</I> and <I>B</I>
[<A
HREF="node151.html#stewart72">93</A>].
<A NAME="1751"></A><A NAME="1752"></A>
Deflating subspaces are a generalization of invariant subspaces:
<A NAME="1753"></A><A NAME="1754"></A>
For each <I>k</I>
<!-- MATH
$(1\leq k \leq n)$
-->
<IMG
WIDTH="93" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img33.png"
ALT="$(1 \leq k \leq n)$">,
the first <I>k</I> columns of <I>Z</I> span a right
deflating subspace mapped by both <I>A</I> and <I>B</I> into a left deflating subspace
spanned by the first <I>k</I> columns of <I>Q</I>.
<P>
More formally, let
<!-- MATH
$Q = (Q_1,\,Q_2)$
-->
<I>Q</I> = (<I>Q</I><SUB>1</SUB>, <I>Q</I><SUB>2</SUB>) and
<!-- MATH
$Z = (Z_1,\,Z_2)$
-->
<I>Z</I> = (<I>Z</I><SUB>1</SUB>, <I>Z</I><SUB>2</SUB>) be a conformal
partitioning with respect to the cluster of <I>k</I> eigenvalues in the
(1,1)-block of (<I>S</I>, <I>T</I>), i.e. where <I>Q</I><SUB>1</SUB> and <I>Z</I><SUB>1</SUB> both have <I>k</I> columns,
and <I>S</I><SUB>11</SUB> and <I>T</I><SUB>11</SUB> below are both <I>k</I>-by-<I>k</I>,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left( \begin{array}{c} Q^H_1 \\Q^H_2 \end{array} \right)
(A - \lambda B) \left( \,\, Z_1 \,\,\, Z_2 \,\, \right)
= S - \lambda T \equiv
\left( \begin{array}{cc} S_{11} & S_{12} \\
0 & S_{22} \end{array} \right)
- \lambda \left( \begin{array}{cc} T_{11} & T_{12} \\
0 & T_{22} \end{array} \right).
\end{displaymath}
-->
<IMG
WIDTH="551" HEIGHT="54" BORDER="0"
SRC="img60.png"
ALT="\begin{displaymath}
\left( \begin{array}{c} Q^H_1 \\ Q^H_2 \end{array} \right)
...
...rray}{cc} T_{11} & T_{12} \\
0 & T_{22} \end{array} \right).
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Then subspaces
<!-- MATH
${\cal{L}} = \mbox{span}(Q_1)$
-->
<IMG
WIDTH="109" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img61.png"
ALT="${\cal{L}} = \mbox{span}(Q_1)$">
and
<!-- MATH
${\cal{R}} = \mbox{span}(Z_1)$
-->
<IMG
WIDTH="110" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img62.png"
ALT="${\cal{R}} = \mbox{span}(Z_1)$">
form a pair of (left and right) deflating subspaces associated with the
cluster of
<!-- MATH
$(S_{11},T_{11})$
-->
(<I>S</I><SUB>11</SUB>,<I>T</I><SUB>11</SUB>), satisfying
<!-- MATH
${\cal{L}} = A{\cal{R}} + B{\cal{R}}$
-->
<IMG
WIDTH="118" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img63.png"
ALT="${\cal{L}} = A{\cal{R}} + B{\cal{R}}$">
and
<!-- MATH
$\mbox{dim}(\cal{L}) = \mbox{dim}(\cal{R})$
-->
<IMG
WIDTH="140" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img64.png"
ALT="$\mbox{dim}(\cal{L}) = \mbox{dim}(\cal{R})$">
[<A
HREF="node151.html#stewart73">94</A>,<A
HREF="node151.html#stewartsun90">95</A>].
It is possible to order the generalized Schur form so that
<!-- MATH
$(S_{11}, T_{11})$
-->
(<I>S</I><SUB>11</SUB>, <I>T</I><SUB>11</SUB>) has any desired subset of <I>k</I> eigenvalues,
taken from the set of <I>n</I> eigenvalues of (<I>S</I>,<I>T</I>).
<P>
<A NAME="1788"></A>
As for the standard nonsymmetric eigenproblem,
two pairs of drivers are provided,
one pair focusing on the generalized Schur decomposition, and the other pair
on the eigenvalues and eigenvectors as shown in Table <A HREF="node36.html#tabdrivegeig">2.6</A>:
<P>
<UL><LI>xGGES<A NAME="1791"></A><A NAME="1792"></A><A NAME="1793"></A><A NAME="1794"></A>:
a simple driver that computes all or part of the
generalized Schur decomposition of (<I>A</I>, <I>B</I>), with optional
ordering of the eigenvalues; <A NAME="1795"></A>
<P>
<LI>xGGESX<A NAME="1796"></A><A NAME="1797"></A><A NAME="1798"></A><A NAME="1799"></A>:
an expert driver that can additionally compute condition
numbers for the average of a selected subset of eigenvalues,
and for the corresponding pair of deflating subspaces;
<P>
<LI>xGGEV<A NAME="1800"></A><A NAME="1801"></A><A NAME="1802"></A><A NAME="1803"></A>:
a simple driver that computes all the generalized
eigenvalues of (<I>A</I>, <I>B</I>), and optionally the left or right
eigenvectors (or both);
<P>
<LI>xGGEVX<A NAME="1804"></A><A NAME="1805"></A><A NAME="1806"></A><A NAME="1807"></A>:
an expert driver that can additionally balance the
matrix pair to improve the conditioning of the eigenvalues and
eigenvectors, and compute condition numbers for the
eigenvalues and/or left and right eigenvectors (or both).
<P>
</UL>
To save space in Table <A HREF="node36.html#tabdrivegeig">2.6</A>, the word ``generalized'' is
omitted before Schur decomposition, eigenvalues/vectors and singular
values/vectors.
<P>
The subroutines xGGES and xGGEV are improved versions of the drivers,
xGEGS and xGEGV, respectively. xGEGS and xGEGV have been retained for
compatibility with Release 2.0 of LAPACK, but we omit references to these
routines in the remainder of this users' guide.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4617"
HREF="node36.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4611"
HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4605"
HREF="node34.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4613"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4615"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4618"
HREF="node36.html">Generalized Singular Value Decomposition</A>
<B> Up:</B> <A NAME="tex2html4612"
HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4606"
HREF="node34.html">Generalized Symmetric Definite Eigenproblems</A>
  <B> <A NAME="tex2html4614"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4616"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|