File: node35.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (529 lines) | stat: -rw-r--r-- 15,251 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Nonsymmetric Eigenproblems (GNEP)</TITLE>
<META NAME="description" CONTENT="Generalized Nonsymmetric Eigenproblems (GNEP)">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node36.html">
<LINK REL="previous" HREF="node34.html">
<LINK REL="up" HREF="node33.html">
<LINK REL="next" HREF="node36.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4617"
 HREF="node36.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4611"
 HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4605"
 HREF="node34.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4613"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4615"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4618"
 HREF="node36.html">Generalized Singular Value Decomposition</A>
<B> Up:</B> <A NAME="tex2html4612"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4606"
 HREF="node34.html">Generalized Symmetric Definite Eigenproblems</A>
 &nbsp <B>  <A NAME="tex2html4614"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4616"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03235200000000000000"></A>
<A NAME="sec_gnep_driver"></A>
<BR>
Generalized Nonsymmetric Eigenproblems (GNEP)
</H3>

<P>
<A NAME="1718"></A><A NAME="1719"></A>
Given a matrix pair (<I>A</I>, <I>B</I>), where <I>A</I> and <I>B</I> are square <I>n</I>  x  <I>n</I>
matrices, the <B>generalized nonsymmetric eigenvalue problem</B> is to find<A NAME="1721"></A><A NAME="1722"></A>
the <B>eigenvalues</B> <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
<A NAME="1724"></A> and corresponding
<B>eigenvectors</B> <A NAME="1726"></A>
<IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img43.png"
 ALT="$x \not= 0$">
such that
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A x = \lambda B x ,
\end{displaymath}
 -->


<IMG
 WIDTH="84" HEIGHT="30" BORDER="0"
 SRC="img44.png"
 ALT="\begin{displaymath}
A x = \lambda B x ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<I>or</I> to find the eigenvalues <IMG
 WIDTH="15" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img45.png"
 ALT="$\mu$">
and corresponding eigenvectors
<IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img46.png"
 ALT="$y \not= 0$">
such that
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\mu A y = B y.
\end{displaymath}
 -->


<IMG
 WIDTH="83" HEIGHT="30" BORDER="0"
 SRC="img47.png"
 ALT="\begin{displaymath}
\mu A y = B y.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Note that these problems are equivalent with 
<!-- MATH
 $\mu = 1/\lambda$
 -->
<IMG
 WIDTH="66" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img48.png"
 ALT="$\mu = 1/\lambda$">
and <I>x</I>=<I>y</I>
if neither <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
nor <IMG
 WIDTH="15" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img45.png"
 ALT="$\mu$">
is zero.  In order to deal with the case
that <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
or <IMG
 WIDTH="15" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img45.png"
 ALT="$\mu$">
is zero, or nearly so, the LAPACK routines return
two values, <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
and <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">,
for each eigenvalue, such that

<!-- MATH
 $\lambda = \alpha/\beta$
 -->
<IMG
 WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img51.png"
 ALT="$\lambda = \alpha/\beta$">
and 
<!-- MATH
 $\mu = \beta/\alpha$
 -->
<IMG
 WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img52.png"
 ALT="$\mu = \beta/\alpha$">.
<BR>

<P>
More precisely, <I>x</I> and <I>y</I> are called <B>right eigenvectors</B>.
<A NAME="1729"></A>
Vectors <IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img53.png"
 ALT="$u \not= 0$">
or <IMG
 WIDTH="45" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img54.png"
 ALT="$v \not= 0$">
satisfying
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
u^H A = \lambda u^H B \quad\mbox{or}\quad \mu v^H A = v^H B
\end{displaymath}
 -->


<IMG
 WIDTH="260" HEIGHT="30" BORDER="0"
 SRC="img55.png"
 ALT="\begin{displaymath}
u^H A = \lambda u^H B \quad\mbox{or}\quad \mu v^H A = v^H B
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
are called <B>left eigenvectors</B>.
<A NAME="1732"></A>

<P>
Sometimes the following, equivalent notation is used to refer to the
generalized eigenproblem for the pair (<I>A</I>,<I>B</I>): The object <IMG
 WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img56.png"
 ALT="$A - \lambda B$">,
where <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
is an indeterminate, is called a <B>matrix pencil</B>, or
just <B>pencil</B><A NAME="1735"></A>.
So one can also refer to the generalized eigenvalues
and eigenvectors of the pencil <IMG
 WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img56.png"
 ALT="$A - \lambda B$">.

<P>
If the determinant of <IMG
 WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img56.png"
 ALT="$A - \lambda B$">
is identically
zero for all values of <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">,
the eigenvalue problem is called <B>singular</B>; otherwise it is <B>regular</B>.
<A NAME="1738"></A>
Singularity of (<I>A</I>,<I>B</I>) is signaled by some 
<!-- MATH
 $\alpha = \beta = 0$
 -->
<IMG
 WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img57.png"
 ALT="$\alpha = \beta = 0$">
(in the presence of roundoff, <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
and <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
may be very small).
In this case, the eigenvalue problem is very ill-conditioned,
<A NAME="1739"></A>
and in fact some of the other nonzero values of <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
and <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
may be indeterminate (see section <A HREF="node105.html#sec_singular">4.11.1.4</A> for further
discussion) [<A
 HREF="node151.html#stewart72">93</A>,<A
 HREF="node151.html#wilkinson79">105</A>,<A
 HREF="node151.html#demmelkagstrom87">29</A>].
The current routines in LAPACK are intended only for regular matrix pencils.

<P>
The generalized nonsymmetric eigenvalue problem can be solved via the
<B>generalized Schur decomposition</B>
<A NAME="1743"></A>
 of the matrix pair (<I>A</I>, <I>B</I>), defined in the <I>real case</I> as
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = Q S Z^T, \quad B = Q T Z^T
\end{displaymath}
 -->


<IMG
 WIDTH="198" HEIGHT="30" BORDER="0"
 SRC="img58.png"
 ALT="\begin{displaymath}
A = Q S Z^T, \quad B = Q T Z^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Q</I> and <I>Z</I> are orthogonal matrices, <I>T</I> is upper triangular,
and <I>S</I> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
blocks, the 2-by-2 blocks corresponding to complex conjugate pairs of eigenvalues
of (<I>A</I>, <I>B</I>).  In the <I>complex case</I>, the generalized Schur decomposition is
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = Q S Z^H, \quad B = Q T Z^H
\end{displaymath}
 -->


<IMG
 WIDTH="202" HEIGHT="30" BORDER="0"
 SRC="img59.png"
 ALT="\begin{displaymath}
A = Q S Z^H, \quad B = Q T Z^H
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <I>Q</I> and <I>Z</I> are unitary and <I>S</I> and <I>T</I> are both upper triangular. 
<BR>

<P>
The columns of <I>Q</I> and <I>Z</I> are called <B>left and right generalized Schur
vectors</B>
<A NAME="1747"></A><A NAME="1748"></A>
and span pairs of <B>deflating subspaces</B> of <I>A</I> and <I>B</I>
[<A
 HREF="node151.html#stewart72">93</A>].
<A NAME="1751"></A><A NAME="1752"></A>
Deflating subspaces are a generalization of invariant subspaces:
<A NAME="1753"></A><A NAME="1754"></A>
For each <I>k</I> 
<!-- MATH
 $(1\leq k \leq n)$
 -->
<IMG
 WIDTH="93" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img33.png"
 ALT="$(1 \leq k \leq n)$">,
the first <I>k</I> columns of <I>Z</I> span a right
deflating subspace mapped by both <I>A</I> and <I>B</I> into a left deflating subspace
spanned by the first <I>k</I> columns of <I>Q</I>.

<P>
More formally, let 
<!-- MATH
 $Q = (Q_1,\,Q_2)$
 -->
<I>Q</I> = (<I>Q</I><SUB>1</SUB>, <I>Q</I><SUB>2</SUB>) and 
<!-- MATH
 $Z = (Z_1,\,Z_2)$
 -->
<I>Z</I> = (<I>Z</I><SUB>1</SUB>, <I>Z</I><SUB>2</SUB>) be a conformal
partitioning with respect to the cluster of <I>k</I> eigenvalues in the
(1,1)-block of (<I>S</I>, <I>T</I>), i.e. where <I>Q</I><SUB>1</SUB> and <I>Z</I><SUB>1</SUB> both have <I>k</I> columns,
and <I>S</I><SUB>11</SUB> and <I>T</I><SUB>11</SUB> below are both <I>k</I>-by-<I>k</I>,
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\left( \begin{array}{c} Q^H_1 \\Q^H_2 \end{array} \right)
            (A - \lambda B) \left( \,\, Z_1 \,\,\, Z_2 \,\, \right)
            = S - \lambda T \equiv
        \left( \begin{array}{cc} S_{11} & S_{12} \\
                                     0  & S_{22} \end{array} \right)
        - \lambda \left( \begin{array}{cc} T_{11} & T_{12} \\
                                               0  & T_{22} \end{array} \right).
\end{displaymath}
 -->


<IMG
 WIDTH="551" HEIGHT="54" BORDER="0"
 SRC="img60.png"
 ALT="\begin{displaymath}
\left( \begin{array}{c} Q^H_1 \\ Q^H_2 \end{array} \right)
...
...rray}{cc} T_{11} &amp; T_{12} \\
0 &amp; T_{22} \end{array} \right).
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Then subspaces 
<!-- MATH
 ${\cal{L}} = \mbox{span}(Q_1)$
 -->
<IMG
 WIDTH="109" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img61.png"
 ALT="${\cal{L}} = \mbox{span}(Q_1)$">
and 
<!-- MATH
 ${\cal{R}} = \mbox{span}(Z_1)$
 -->
<IMG
 WIDTH="110" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img62.png"
 ALT="${\cal{R}} = \mbox{span}(Z_1)$">
form a pair of (left and right) deflating subspaces associated with the
cluster of 
<!-- MATH
 $(S_{11},T_{11})$
 -->
(<I>S</I><SUB>11</SUB>,<I>T</I><SUB>11</SUB>), satisfying 
<!-- MATH
 ${\cal{L}} = A{\cal{R}} + B{\cal{R}}$
 -->
<IMG
 WIDTH="118" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img63.png"
 ALT="${\cal{L}} = A{\cal{R}} + B{\cal{R}}$">
and 
<!-- MATH
 $\mbox{dim}(\cal{L}) = \mbox{dim}(\cal{R})$
 -->
<IMG
 WIDTH="140" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img64.png"
 ALT="$\mbox{dim}(\cal{L}) = \mbox{dim}(\cal{R})$">
[<A
 HREF="node151.html#stewart73">94</A>,<A
 HREF="node151.html#stewartsun90">95</A>].
It is possible to order the generalized Schur form so that

<!-- MATH
 $(S_{11}, T_{11})$
 -->
(<I>S</I><SUB>11</SUB>, <I>T</I><SUB>11</SUB>) has any desired subset of <I>k</I> eigenvalues,
taken from the set of <I>n</I> eigenvalues of (<I>S</I>,<I>T</I>).

<P>
<A NAME="1788"></A>
As for the standard nonsymmetric eigenproblem,
two pairs of drivers are provided,
one pair focusing on the generalized Schur decomposition, and the other pair
on the eigenvalues and eigenvectors as shown in Table <A HREF="node36.html#tabdrivegeig">2.6</A>:

<P>

<UL><LI>xGGES<A NAME="1791"></A><A NAME="1792"></A><A NAME="1793"></A><A NAME="1794"></A>:
         a simple driver that computes all or part of the
         generalized Schur decomposition of (<I>A</I>, <I>B</I>), with optional
         ordering of the eigenvalues; <A NAME="1795"></A>

<P>

<LI>xGGESX<A NAME="1796"></A><A NAME="1797"></A><A NAME="1798"></A><A NAME="1799"></A>:
         an expert driver that can additionally compute condition
         numbers for the average of a selected subset of eigenvalues,
         and for the corresponding pair of deflating subspaces;

<P>

<LI>xGGEV<A NAME="1800"></A><A NAME="1801"></A><A NAME="1802"></A><A NAME="1803"></A>:
         a simple driver that computes all the generalized
         eigenvalues of (<I>A</I>, <I>B</I>), and optionally the left or right
         eigenvectors (or both);

<P>

<LI>xGGEVX<A NAME="1804"></A><A NAME="1805"></A><A NAME="1806"></A><A NAME="1807"></A>:
         an expert driver that can additionally balance the
         matrix pair to improve the conditioning of the eigenvalues and
         eigenvectors, and compute condition numbers for the
         eigenvalues and/or left and right eigenvectors (or both).

<P>

</UL>
To save space in Table <A HREF="node36.html#tabdrivegeig">2.6</A>, the word ``generalized'' is
omitted before Schur decomposition, eigenvalues/vectors and singular
values/vectors.

<P>
The subroutines xGGES and xGGEV are improved versions of the drivers,
xGEGS and xGEGV, respectively.  xGEGS and xGEGV have been retained for
compatibility with Release 2.0 of LAPACK, but we omit references to these
routines in the remainder of this users' guide.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4617"
 HREF="node36.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4611"
 HREF="node33.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4605"
 HREF="node34.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4613"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4615"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4618"
 HREF="node36.html">Generalized Singular Value Decomposition</A>
<B> Up:</B> <A NAME="tex2html4612"
 HREF="node33.html">Generalized Eigenvalue and Singular</A>
<B> Previous:</B> <A NAME="tex2html4606"
 HREF="node34.html">Generalized Symmetric Definite Eigenproblems</A>
 &nbsp <B>  <A NAME="tex2html4614"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4616"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>