File: node39.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (129 lines) | stat: -rw-r--r-- 4,170 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Orthogonal Factorizations and Linear Least Squares Problems</TITLE>
<META NAME="description" CONTENT="Orthogonal Factorizations and Linear Least Squares Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node45.html">
<LINK REL="previous" HREF="node38.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node40.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4691"
 HREF="node40.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4685"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4679"
 HREF="node38.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4687"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4689"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4692"
 HREF="node40.html">QR Factorization</A>
<B> Up:</B> <A NAME="tex2html4686"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4680"
 HREF="node38.html">Linear Equations</A>
 &nbsp <B>  <A NAME="tex2html4688"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4690"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03242000000000000000"></A>
<A NAME="subseccomporthog"></A>
<BR>
Orthogonal Factorizations and Linear Least Squares Problems
</H2>

<P>
LAPACK provides a number of routines for factorizing a general
rectangular <I>m</I>-by-<I>n</I> matrix <I>A</I>,
as the product of an <B>orthogonal</B> matrix (<B>unitary</B> if complex)
and a <B>triangular</B> (or possibly trapezoidal) matrix.

<P>
A real matrix <I>Q</I> is <B>orthogonal</B> if <I>Q</I><SUP><I>T</I></SUP> <I>Q</I> = <I>I</I>;
a complex matrix <I>Q</I> is <B>unitary</B> if <I>Q</I><SUP><I>H</I></SUP> <I>Q</I> = <I>I</I>.
Orthogonal or unitary matrices have the important property that they leave the
two-norm of a vector invariant:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\|x||_2 = \|Qx\|_2, \quad \mbox{if $Q$\  is orthogonal or unitary.}
\end{displaymath}
 -->


<IMG
 WIDTH="351" HEIGHT="31" BORDER="0"
 SRC="img101.png"
 ALT="\begin{displaymath}
\Vert x\vert\vert _2 = \Vert Qx\Vert _2, \quad \mbox{if $Q$\ is orthogonal or unitary.}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
As a result, they help to maintain numerical stability because they do not
<A NAME="2563"></A>
amplify rounding errors.

<P>
Orthogonal factorizations<A NAME="2564"></A> are used in
the solution of linear least squares problems<A NAME="2565"></A>.
They may also be used to perform preliminary
steps in the solution of eigenvalue or
singular value problems.

<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>

<UL>
<LI><A NAME="tex2html4693"
 HREF="node40.html"><I>QR</I> Factorization</A>
<LI><A NAME="tex2html4694"
 HREF="node41.html"><B><I>LQ</I></B> Factorization</A>
<LI><A NAME="tex2html4695"
 HREF="node42.html"><B><I>QR</I></B> Factorization with Column Pivoting</A>
<LI><A NAME="tex2html4696"
 HREF="node43.html">Complete Orthogonal Factorization</A>
<LI><A NAME="tex2html4697"
 HREF="node44.html">Other Factorizations</A>
</UL>
<!--End of Table of Child-Links-->
<BR><HR>
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>