1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Orthogonal Factorizations and Linear Least Squares Problems</TITLE>
<META NAME="description" CONTENT="Orthogonal Factorizations and Linear Least Squares Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node45.html">
<LINK REL="previous" HREF="node38.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node40.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4691"
HREF="node40.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4685"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4679"
HREF="node38.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4687"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4689"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4692"
HREF="node40.html">QR Factorization</A>
<B> Up:</B> <A NAME="tex2html4686"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4680"
HREF="node38.html">Linear Equations</A>
  <B> <A NAME="tex2html4688"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4690"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03242000000000000000"></A>
<A NAME="subseccomporthog"></A>
<BR>
Orthogonal Factorizations and Linear Least Squares Problems
</H2>
<P>
LAPACK provides a number of routines for factorizing a general
rectangular <I>m</I>-by-<I>n</I> matrix <I>A</I>,
as the product of an <B>orthogonal</B> matrix (<B>unitary</B> if complex)
and a <B>triangular</B> (or possibly trapezoidal) matrix.
<P>
A real matrix <I>Q</I> is <B>orthogonal</B> if <I>Q</I><SUP><I>T</I></SUP> <I>Q</I> = <I>I</I>;
a complex matrix <I>Q</I> is <B>unitary</B> if <I>Q</I><SUP><I>H</I></SUP> <I>Q</I> = <I>I</I>.
Orthogonal or unitary matrices have the important property that they leave the
two-norm of a vector invariant:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\|x||_2 = \|Qx\|_2, \quad \mbox{if $Q$\ is orthogonal or unitary.}
\end{displaymath}
-->
<IMG
WIDTH="351" HEIGHT="31" BORDER="0"
SRC="img101.png"
ALT="\begin{displaymath}
\Vert x\vert\vert _2 = \Vert Qx\Vert _2, \quad \mbox{if $Q$\ is orthogonal or unitary.}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
As a result, they help to maintain numerical stability because they do not
<A NAME="2563"></A>
amplify rounding errors.
<P>
Orthogonal factorizations<A NAME="2564"></A> are used in
the solution of linear least squares problems<A NAME="2565"></A>.
They may also be used to perform preliminary
steps in the solution of eigenvalue or
singular value problems.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html4693"
HREF="node40.html"><I>QR</I> Factorization</A>
<LI><A NAME="tex2html4694"
HREF="node41.html"><B><I>LQ</I></B> Factorization</A>
<LI><A NAME="tex2html4695"
HREF="node42.html"><B><I>QR</I></B> Factorization with Column Pivoting</A>
<LI><A NAME="tex2html4696"
HREF="node43.html">Complete Orthogonal Factorization</A>
<LI><A NAME="tex2html4697"
HREF="node44.html">Other Factorizations</A>
</UL>
<!--End of Table of Child-Links-->
<BR><HR>
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|