File: node41.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (201 lines) | stat: -rw-r--r-- 6,640 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>LQ Factorization</TITLE>
<META NAME="description" CONTENT="LQ Factorization">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node42.html">
<LINK REL="previous" HREF="node40.html">
<LINK REL="up" HREF="node39.html">
<LINK REL="next" HREF="node42.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4724"
 HREF="node42.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4718"
 HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4712"
 HREF="node40.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4720"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4722"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4725"
 HREF="node42.html">QR Factorization with Column</A>
<B> Up:</B> <A NAME="tex2html4719"
 HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4713"
 HREF="node40.html">QR Factorization</A>
 &nbsp <B>  <A NAME="tex2html4721"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4723"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03242200000000000000">
<B><I>LQ</I></B> Factorization</A>
</H3>

<P>
The <B><I>LQ</I></B>&nbsp;<B>factorization</B><A NAME="2629"></A>
is given by
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = \left( \begin{array}{cc} L & 0 \end{array}\right) Q
  = \left( \begin{array}{cc} L & 0 \end{array}\right)
    \left( \begin{array}{c} Q_1 \\Q_2 \end{array} \right)
  = L Q_1, \quad \mbox{if $ m \le n$,}
\end{displaymath}
 -->


<IMG
 WIDTH="435" HEIGHT="54" BORDER="0"
 SRC="img108.png"
 ALT="\begin{displaymath}
A = \left( \begin{array}{cc} L &amp; 0 \end{array}\right) Q
= \...
... Q_2 \end{array} \right)
= L Q_1, \quad \mbox{if $ m \le n$,}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>L</I></B> is <B><I>m</I></B>-by-<B><I>m</I></B> lower triangular, <B><I>Q</I></B> is <B><I>n</I></B>-by-<B><I>n</I></B>
orthogonal (or unitary), <B><I>Q</I><SUB>1</SUB></B> consists of the first <B><I>m</I></B> rows of <B><I>Q</I></B>,
and <B><I>Q</I><SUB>2</SUB></B> the remaining <B><I>n</I>-<I>m</I></B> rows.

<P>
This factorization is computed by the routine xGELQF, and again <B><I>Q</I></B> is
<A NAME="2640"></A><A NAME="2641"></A><A NAME="2642"></A><A NAME="2643"></A>
represented as a product of elementary reflectors; xORGLQ
<A NAME="2644"></A><A NAME="2645"></A>
<A NAME="2646"></A>
(or xUNGLQ<A NAME="2647"></A><A NAME="2648"></A> in the complex case) can generate
all or part of <B><I>Q</I></B>, and xORMLQ<A NAME="2649"></A><A NAME="2650"></A> (or xUNMLQ
<A NAME="2651"></A><A NAME="2652"></A>) can pre- or post-multiply a given
matrix
by <B><I>Q</I></B> or <B><I>Q</I><SUP><I>T</I></SUP></B> (<B><I>Q</I><SUP><I>H</I></SUP></B> if <B><I>Q</I></B> is complex).

<P>
The <B><I>LQ</I></B> factorization of <B><I>A</I></B> is essentially the same as the <B><I>QR</I></B> factorization
of <B><I>A</I><SUP><I>T</I></SUP></B> (<B><I>A</I><SUP><I>H</I></SUP></B> if <B><I>A</I></B> is complex), since
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = \left( \begin{array}{cc} L & 0 \end{array}\right) Q
\quad \Longleftrightarrow
\quad
A^T = Q^T \left( \begin{array}{c} L^T \\0\end{array}\right) .
\end{displaymath}
 -->


<IMG
 WIDTH="346" HEIGHT="54" BORDER="0"
 SRC="img109.png"
 ALT="\begin{displaymath}
A = \left( \begin{array}{cc} L &amp; 0 \end{array}\right) Q
\qua...
...A^T = Q^T \left( \begin{array}{c} L^T \\ 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>

<P>
The <B><I>LQ</I></B> factorization may be used to find a minimum norm solution<A NAME="2659"></A> of
an underdetermined<A NAME="2660"></A> system of linear equations <B><I>A x</I> = <I>b</I></B> where <B><I>A</I></B> is
<B><I>m</I></B>-by-<B><I>n</I></B> with <B><I>m</I> &lt; <I>n</I></B> and has rank <B><I>m</I></B>. The solution is given by
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
x = Q^T \left( \begin{array}{c} L^{-1} b \\0 \end{array} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="135" HEIGHT="54" BORDER="0"
 SRC="img110.png"
 ALT="\begin{displaymath}
x = Q^T \left( \begin{array}{c} L^{-1} b \\ 0 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and may be computed by calls to xTRTRS and xORMLQ.
<A NAME="2665"></A><A NAME="2666"></A><A NAME="2667"></A><A NAME="2668"></A>
<A NAME="2669"></A><A NAME="2670"></A>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4724"
 HREF="node42.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4718"
 HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4712"
 HREF="node40.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4720"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4722"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4725"
 HREF="node42.html">QR Factorization with Column</A>
<B> Up:</B> <A NAME="tex2html4719"
 HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4713"
 HREF="node40.html">QR Factorization</A>
 &nbsp <B>  <A NAME="tex2html4721"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4723"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>