1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>LQ Factorization</TITLE>
<META NAME="description" CONTENT="LQ Factorization">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node42.html">
<LINK REL="previous" HREF="node40.html">
<LINK REL="up" HREF="node39.html">
<LINK REL="next" HREF="node42.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4724"
HREF="node42.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4718"
HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4712"
HREF="node40.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4720"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4722"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4725"
HREF="node42.html">QR Factorization with Column</A>
<B> Up:</B> <A NAME="tex2html4719"
HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4713"
HREF="node40.html">QR Factorization</A>
  <B> <A NAME="tex2html4721"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4723"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03242200000000000000">
<B><I>LQ</I></B> Factorization</A>
</H3>
<P>
The <B><I>LQ</I></B> <B>factorization</B><A NAME="2629"></A>
is given by
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{cc} L & 0 \end{array}\right) Q
= \left( \begin{array}{cc} L & 0 \end{array}\right)
\left( \begin{array}{c} Q_1 \\Q_2 \end{array} \right)
= L Q_1, \quad \mbox{if $ m \le n$,}
\end{displaymath}
-->
<IMG
WIDTH="435" HEIGHT="54" BORDER="0"
SRC="img108.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{cc} L & 0 \end{array}\right) Q
= \...
... Q_2 \end{array} \right)
= L Q_1, \quad \mbox{if $ m \le n$,}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>L</I></B> is <B><I>m</I></B>-by-<B><I>m</I></B> lower triangular, <B><I>Q</I></B> is <B><I>n</I></B>-by-<B><I>n</I></B>
orthogonal (or unitary), <B><I>Q</I><SUB>1</SUB></B> consists of the first <B><I>m</I></B> rows of <B><I>Q</I></B>,
and <B><I>Q</I><SUB>2</SUB></B> the remaining <B><I>n</I>-<I>m</I></B> rows.
<P>
This factorization is computed by the routine xGELQF, and again <B><I>Q</I></B> is
<A NAME="2640"></A><A NAME="2641"></A><A NAME="2642"></A><A NAME="2643"></A>
represented as a product of elementary reflectors; xORGLQ
<A NAME="2644"></A><A NAME="2645"></A>
<A NAME="2646"></A>
(or xUNGLQ<A NAME="2647"></A><A NAME="2648"></A> in the complex case) can generate
all or part of <B><I>Q</I></B>, and xORMLQ<A NAME="2649"></A><A NAME="2650"></A> (or xUNMLQ
<A NAME="2651"></A><A NAME="2652"></A>) can pre- or post-multiply a given
matrix
by <B><I>Q</I></B> or <B><I>Q</I><SUP><I>T</I></SUP></B> (<B><I>Q</I><SUP><I>H</I></SUP></B> if <B><I>Q</I></B> is complex).
<P>
The <B><I>LQ</I></B> factorization of <B><I>A</I></B> is essentially the same as the <B><I>QR</I></B> factorization
of <B><I>A</I><SUP><I>T</I></SUP></B> (<B><I>A</I><SUP><I>H</I></SUP></B> if <B><I>A</I></B> is complex), since
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{cc} L & 0 \end{array}\right) Q
\quad \Longleftrightarrow
\quad
A^T = Q^T \left( \begin{array}{c} L^T \\0\end{array}\right) .
\end{displaymath}
-->
<IMG
WIDTH="346" HEIGHT="54" BORDER="0"
SRC="img109.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{cc} L & 0 \end{array}\right) Q
\qua...
...A^T = Q^T \left( \begin{array}{c} L^T \\ 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<P>
The <B><I>LQ</I></B> factorization may be used to find a minimum norm solution<A NAME="2659"></A> of
an underdetermined<A NAME="2660"></A> system of linear equations <B><I>A x</I> = <I>b</I></B> where <B><I>A</I></B> is
<B><I>m</I></B>-by-<B><I>n</I></B> with <B><I>m</I> < <I>n</I></B> and has rank <B><I>m</I></B>. The solution is given by
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = Q^T \left( \begin{array}{c} L^{-1} b \\0 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="135" HEIGHT="54" BORDER="0"
SRC="img110.png"
ALT="\begin{displaymath}
x = Q^T \left( \begin{array}{c} L^{-1} b \\ 0 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and may be computed by calls to xTRTRS and xORMLQ.
<A NAME="2665"></A><A NAME="2666"></A><A NAME="2667"></A><A NAME="2668"></A>
<A NAME="2669"></A><A NAME="2670"></A>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4724"
HREF="node42.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4718"
HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4712"
HREF="node40.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4720"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4722"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4725"
HREF="node42.html">QR Factorization with Column</A>
<B> Up:</B> <A NAME="tex2html4719"
HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4713"
HREF="node40.html">QR Factorization</A>
  <B> <A NAME="tex2html4721"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4723"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|