1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>QR Factorization with Column Pivoting</TITLE>
<META NAME="description" CONTENT="QR Factorization with Column Pivoting">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node43.html">
<LINK REL="previous" HREF="node41.html">
<LINK REL="up" HREF="node39.html">
<LINK REL="next" HREF="node43.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4738"
HREF="node43.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4732"
HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4726"
HREF="node41.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4734"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4736"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4739"
HREF="node43.html">Complete Orthogonal Factorization</A>
<B> Up:</B> <A NAME="tex2html4733"
HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4727"
HREF="node41.html">LQ Factorization</A>
  <B> <A NAME="tex2html4735"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4737"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03242300000000000000">
<B><I>QR</I></B> Factorization with Column Pivoting</A>
</H3>
<P>
To solve a linear least squares problem (<A HREF="node27.html#llsq">2.1</A>)<A NAME="2673"></A><A NAME="2674"></A>
when <B><I>A</I></B> is not of full rank, or the rank of <B><I>A</I></B> is in doubt, we can
perform either a <B><I>QR</I></B> factorization with column pivoting
<A NAME="2675"></A> or a singular value
decomposition (see subsection <A HREF="node53.html#subseccompsvd">2.4.6</A>).
<P>
The <B><I>QR</I></B> <B>factorization with column pivoting</B> is given by
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = Q\left( \begin{array}{c}R\\0\end{array}\right)P^T, \quad m \ge n,
\end{displaymath}
-->
<IMG
WIDTH="212" HEIGHT="54" BORDER="0"
SRC="img111.png"
ALT="\begin{displaymath}
A = Q\left( \begin{array}{c}R\\ 0\end{array}\right)P^T, \quad m \ge n,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>Q</I></B> and <B><I>R</I></B> are as before and <B><I>P</I></B> is a permutation matrix, chosen
(in general) so that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
|r_{11}| \ge |r_{22}| \ge \ldots \ge |r_{nn}|
\end{displaymath}
-->
<IMG
WIDTH="186" HEIGHT="31" BORDER="0"
SRC="img112.png"
ALT="\begin{displaymath}
\vert r_{11}\vert \ge \vert r_{22}\vert \ge \ldots \ge \vert r_{nn}\vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and moreover, for each <B><I>k</I></B>,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
|r_{kk}| \ge \|R_{k:j,j}\|_2 \quad \mbox{for $j = k+1, \ldots, n$.}
\end{displaymath}
-->
<IMG
WIDTH="289" HEIGHT="32" BORDER="0"
SRC="img113.png"
ALT="\begin{displaymath}
\vert r_{kk}\vert \ge \Vert R_{k:j,j}\Vert _2 \quad \mbox{for $j = k+1, \ldots, n$.}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
In exact arithmetic, if
<!-- MATH
$\mbox{rank}(A) = k$
-->
<IMG
WIDTH="98" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img114.png"
ALT="$\mbox{rank}(A) = k$">,
then the whole of the submatrix
<B><I>R</I><SUB>22</SUB></B> in rows and columns <B><I>k</I>+1</B> to <B><I>n</I></B>
would be zero. In numerical computation, the aim must be to
determine an index <B><I>k</I></B>, such that the leading submatrix <B><I>R</I><SUB>11</SUB></B> in the first
<B><I>k</I></B> rows and columns is well-conditioned, and <B><I>R</I><SUB>22</SUB></B> is negligible:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
R = \left( \begin{array}{cc}R_{11} & R_{12} \\0 & R_{22} \end{array}\right)
\simeq \left( \begin{array}{cc}R_{11} & R_{12} \\0 & 0\end{array}\right) .
\end{displaymath}
-->
<IMG
WIDTH="291" HEIGHT="54" BORDER="0"
SRC="img115.png"
ALT="\begin{displaymath}
R = \left( \begin{array}{cc}R_{11} & R_{12} \\ 0 & R_{22} \e...
... \begin{array}{cc}R_{11} & R_{12} \\ 0 & 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Then <B><I>k</I></B> is the effective rank of <B><I>A</I></B>.
See Golub and Van Loan [<A
HREF="node151.html#GVL2">55</A>]
for a further discussion of numerical rank determination.
<A NAME="2704"></A><A NAME="2705"></A>
<P>
The so-called basic solution to the linear least squares
problem (<A HREF="node27.html#llsq">2.1</A>)<A NAME="2707"></A> can be obtained from this factorization as
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = P \left( \begin{array}{c} R_{11}^{-1} \hat{c}_1 \\0 \end{array} \right),
\end{displaymath}
-->
<IMG
WIDTH="144" HEIGHT="54" BORDER="0"
SRC="img116.png"
ALT="\begin{displaymath}
x = P \left( \begin{array}{c} R_{11}^{-1} \hat{c}_1 \\ 0 \end{array} \right),
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img117.png"
ALT="$\hat{c}_1$">
consists of just the first <B><I>k</I></B> elements of <B><I>c</I> = <I>Q</I><SUP><I>T</I></SUP> <I>b</I></B>.
<P>
The <B><I>QR</I></B> factorization with column pivoting can be computed either by
subroutine xGEQPF<A NAME="2715"></A><A NAME="2716"></A><A NAME="2717"></A><A NAME="2718"></A>
or by subroutine
xGEQP3.<A NAME="2719"></A><A NAME="2720"></A><A NAME="2721"></A><A NAME="2722"></A>
Both subroutines compute the factorization but do not attempt to
determine the rank of <B><I>A</I></B>. xGEQP3 is a Level 3 BLAS version of <B><I>QR</I></B> with
column pivoting and is considerably faster than xGEQPF, while maintaining
the same numerical behavior. The difference between the two routines
can best be described as follows. For each column, the subroutine xGEQPF
selects one column, permutes it, computes the reflector that zeroes some
of its components, and applies it to the rest of the matrix via Level 2
BLAS operations. The subroutine xGEQP3, however, only updates one column
and one row of the rest of the matrix (information necessary for the
next pivoting phase) and delays the update of the rest of the matrix
until a block of columns has been processed. This resulting block
of reflectors is then applied to the rest of the matrix as a Level 3 BLAS
operation. xGEQPF has been retained for compatibility with Release 2.0
of LAPACK, but we omit references to this routine in the remainder
of this users' guide.
<P>
For both subroutines, the matrix <B><I>Q</I></B> is represented in exactly the same way
as after a call of
xGEQRF<A NAME="2723"></A><A NAME="2724"></A><A NAME="2725"></A><A NAME="2726"></A>, and so the
routines xORGQR and xORMQR can be used to work with <B><I>Q</I></B>
(xUNGQR and xUNMQR if <B><I>Q</I></B> is complex).
<A NAME="2727"></A><A NAME="2728"></A><A NAME="2729"></A><A NAME="2730"></A>
<A NAME="2731"></A><A NAME="2732"></A><A NAME="2733"></A><A NAME="2734"></A>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4738"
HREF="node43.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4732"
HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4726"
HREF="node41.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4734"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4736"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4739"
HREF="node43.html">Complete Orthogonal Factorization</A>
<B> Up:</B> <A NAME="tex2html4733"
HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4727"
HREF="node41.html">LQ Factorization</A>
  <B> <A NAME="tex2html4735"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4737"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|