File: node42.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (269 lines) | stat: -rw-r--r-- 9,083 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>QR Factorization with Column Pivoting</TITLE>
<META NAME="description" CONTENT="QR Factorization with Column Pivoting">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node43.html">
<LINK REL="previous" HREF="node41.html">
<LINK REL="up" HREF="node39.html">
<LINK REL="next" HREF="node43.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4738"
 HREF="node43.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4732"
 HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4726"
 HREF="node41.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4734"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4736"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4739"
 HREF="node43.html">Complete Orthogonal Factorization</A>
<B> Up:</B> <A NAME="tex2html4733"
 HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4727"
 HREF="node41.html">LQ Factorization</A>
 &nbsp <B>  <A NAME="tex2html4735"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4737"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03242300000000000000">
<B><I>QR</I></B> Factorization with Column Pivoting</A>
</H3>

<P>
To solve a linear least squares problem&nbsp;(<A HREF="node27.html#llsq">2.1</A>)<A NAME="2673"></A><A NAME="2674"></A>
when <B><I>A</I></B> is not of full rank, or the rank of <B><I>A</I></B> is in doubt, we can
perform either a <B><I>QR</I></B> factorization with column pivoting
<A NAME="2675"></A> or a singular value
decomposition (see subsection <A HREF="node53.html#subseccompsvd">2.4.6</A>).

<P>
The <B><I>QR</I></B>&nbsp;<B>factorization with column pivoting</B> is given by
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A = Q\left( \begin{array}{c}R\\0\end{array}\right)P^T, \quad m \ge n,
\end{displaymath}
 -->


<IMG
 WIDTH="212" HEIGHT="54" BORDER="0"
 SRC="img111.png"
 ALT="\begin{displaymath}
A = Q\left( \begin{array}{c}R\\ 0\end{array}\right)P^T, \quad m \ge n,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>Q</I></B> and <B><I>R</I></B> are as before and <B><I>P</I></B> is a permutation matrix, chosen
(in general) so that
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
|r_{11}| \ge |r_{22}| \ge \ldots \ge |r_{nn}|
\end{displaymath}
 -->


<IMG
 WIDTH="186" HEIGHT="31" BORDER="0"
 SRC="img112.png"
 ALT="\begin{displaymath}
\vert r_{11}\vert \ge \vert r_{22}\vert \ge \ldots \ge \vert r_{nn}\vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and moreover, for each <B><I>k</I></B>,
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
|r_{kk}| \ge \|R_{k:j,j}\|_2 \quad \mbox{for $j = k+1, \ldots, n$.}
\end{displaymath}
 -->


<IMG
 WIDTH="289" HEIGHT="32" BORDER="0"
 SRC="img113.png"
 ALT="\begin{displaymath}
\vert r_{kk}\vert \ge \Vert R_{k:j,j}\Vert _2 \quad \mbox{for $j = k+1, \ldots, n$.}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
In exact arithmetic, if 
<!-- MATH
 $\mbox{rank}(A) = k$
 -->
<IMG
 WIDTH="98" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img114.png"
 ALT="$\mbox{rank}(A) = k$">,
then the whole of the submatrix
<B><I>R</I><SUB>22</SUB></B> in rows and columns <B><I>k</I>+1</B> to <B><I>n</I></B>
would be zero. In numerical computation, the aim must be to
determine an index <B><I>k</I></B>, such that the leading submatrix <B><I>R</I><SUB>11</SUB></B> in the first
<B><I>k</I></B> rows and columns is well-conditioned, and <B><I>R</I><SUB>22</SUB></B> is negligible:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
R = \left( \begin{array}{cc}R_{11} & R_{12} \\0 & R_{22} \end{array}\right)
\simeq \left( \begin{array}{cc}R_{11} & R_{12} \\0 & 0\end{array}\right) .
\end{displaymath}
 -->


<IMG
 WIDTH="291" HEIGHT="54" BORDER="0"
 SRC="img115.png"
 ALT="\begin{displaymath}
R = \left( \begin{array}{cc}R_{11} &amp; R_{12} \\ 0 &amp; R_{22} \e...
... \begin{array}{cc}R_{11} &amp; R_{12} \\ 0 &amp; 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Then <B><I>k</I></B> is the effective rank of <B><I>A</I></B>.
See Golub and Van Loan&nbsp;[<A
 HREF="node151.html#GVL2">55</A>]
for a further discussion of numerical rank determination.
<A NAME="2704"></A><A NAME="2705"></A>

<P>
The so-called basic solution to the linear least squares
problem&nbsp;(<A HREF="node27.html#llsq">2.1</A>)<A NAME="2707"></A> can be obtained from this factorization as
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
x = P \left( \begin{array}{c} R_{11}^{-1} \hat{c}_1 \\0 \end{array} \right),
\end{displaymath}
 -->


<IMG
 WIDTH="144" HEIGHT="54" BORDER="0"
 SRC="img116.png"
 ALT="\begin{displaymath}
x = P \left( \begin{array}{c} R_{11}^{-1} \hat{c}_1 \\ 0 \end{array} \right),
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img117.png"
 ALT="$\hat{c}_1$">
consists of just the first <B><I>k</I></B> elements of <B><I>c</I> = <I>Q</I><SUP><I>T</I></SUP> <I>b</I></B>.

<P>
The <B><I>QR</I></B> factorization with column pivoting can be computed either by
subroutine xGEQPF<A NAME="2715"></A><A NAME="2716"></A><A NAME="2717"></A><A NAME="2718"></A>
or by subroutine
xGEQP3.<A NAME="2719"></A><A NAME="2720"></A><A NAME="2721"></A><A NAME="2722"></A>
Both subroutines compute the factorization but do not attempt to
determine the rank of <B><I>A</I></B>.  xGEQP3 is a Level 3 BLAS version of <B><I>QR</I></B> with
column pivoting and is considerably faster than xGEQPF, while maintaining
the same numerical behavior.  The difference between the two routines
can best be described as follows.  For each column, the subroutine xGEQPF
selects one column, permutes it, computes the reflector that zeroes some
of its components, and applies it to the rest of the matrix via Level 2
BLAS operations.  The subroutine xGEQP3, however, only updates one column
and one row of the rest of the matrix (information necessary for the
next pivoting phase) and delays the update of the rest of the matrix
until a block of columns has been processed.  This resulting block
of reflectors is then applied to the rest of the matrix as a Level 3 BLAS
operation.  xGEQPF has been retained for compatibility with Release 2.0
of LAPACK, but we omit references to this routine in the remainder
of this users' guide.

<P>
For both subroutines, the matrix <B><I>Q</I></B> is represented in exactly the same way
as after a call of
xGEQRF<A NAME="2723"></A><A NAME="2724"></A><A NAME="2725"></A><A NAME="2726"></A>, and so the
routines xORGQR and xORMQR can be used to work with <B><I>Q</I></B>
(xUNGQR and xUNMQR if <B><I>Q</I></B> is complex).
<A NAME="2727"></A><A NAME="2728"></A><A NAME="2729"></A><A NAME="2730"></A>
<A NAME="2731"></A><A NAME="2732"></A><A NAME="2733"></A><A NAME="2734"></A>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4738"
 HREF="node43.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4732"
 HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4726"
 HREF="node41.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4734"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4736"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4739"
 HREF="node43.html">Complete Orthogonal Factorization</A>
<B> Up:</B> <A NAME="tex2html4733"
 HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4727"
 HREF="node41.html">LQ Factorization</A>
 &nbsp <B>  <A NAME="tex2html4735"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4737"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>