File: node43.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (207 lines) | stat: -rw-r--r-- 6,480 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Complete Orthogonal Factorization</TITLE>
<META NAME="description" CONTENT="Complete Orthogonal Factorization">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node44.html">
<LINK REL="previous" HREF="node42.html">
<LINK REL="up" HREF="node39.html">
<LINK REL="next" HREF="node44.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4752"
 HREF="node44.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4746"
 HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4740"
 HREF="node42.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4748"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4750"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4753"
 HREF="node44.html">Other Factorizations</A>
<B> Up:</B> <A NAME="tex2html4747"
 HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4741"
 HREF="node42.html">QR Factorization with Column</A>
 &nbsp <B>  <A NAME="tex2html4749"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4751"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03242400000000000000">
Complete Orthogonal Factorization</A>
</H3>

<P>
The <B><I>QR</I></B> factorization with column pivoting does not enable us to compute
a <I>minimum norm</I> solution to a rank-deficient linear least squares problem,
<A NAME="2737"></A>
unless <B><I>R</I><SUB>12</SUB> = 0</B>. However,
by applying further orthogonal (or unitary) transformations<A NAME="2739"></A>
from the right to the upper trapezoidal matrix

<!-- MATH
 $\left( \begin{array}{cc}R_{11} & R_{12}\end{array} \right)$
 -->
<IMG
 WIDTH="110" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
 SRC="img118.png"
 ALT="$\left( \begin{array}{cc}R_{11} &amp; R_{12}\end{array} \right)$">,
using the routine xTZRQF (or xTZRZF), <B><I>R</I><SUB>12</SUB></B> can be eliminated:
<A NAME="2746"></A><A NAME="2747"></A><A NAME="2748"></A><A NAME="2749"></A>
<A NAME="2750"></A><A NAME="2751"></A><A NAME="2752"></A><A NAME="2753"></A>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\left( \begin{array}{cc}R_{11} & R_{12}\end{array}\right) Z =
\left( \begin{array}{cc}T_{11} & 0\end{array}\right) .
\end{displaymath}
 -->


<IMG
 WIDTH="234" HEIGHT="37" BORDER="0"
 SRC="img119.png"
 ALT="\begin{displaymath}
\left( \begin{array}{cc}R_{11} &amp; R_{12}\end{array}\right) Z =
\left( \begin{array}{cc}T_{11} &amp; 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
This gives the
<B>complete orthogonal
factorization</B><A NAME="2764"></A>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A P = Q \left(
\begin{array}{cc}T_{11} & 0 \\0 & 0\end{array}
\right) Z^{T}
\end{displaymath}
 -->


<IMG
 WIDTH="184" HEIGHT="54" BORDER="0"
 SRC="img120.png"
 ALT="\begin{displaymath}
A P = Q \left(
\begin{array}{cc}T_{11} &amp; 0 \\ 0 &amp; 0\end{array}\right) Z^{T}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
from which the minimum norm solution<A NAME="2770"></A> can be obtained as
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
x = P Z \left( \begin{array}{c} T_{11}^{-1} \hat{c}_1 \\0\end{array}\right) .
\end{displaymath}
 -->


<IMG
 WIDTH="156" HEIGHT="54" BORDER="0"
 SRC="img121.png"
 ALT="\begin{displaymath}
x = P Z \left( \begin{array}{c} T_{11}^{-1} \hat{c}_1 \\ 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>

<P>
The matrix <B><I>Z</I></B> is not
formed explicitly, but is represented as a product of elementary
reflectors,
<A NAME="2777"></A>
<A NAME="2778"></A>
as described in section&nbsp;<A HREF="node128.html#secorthog">5.4</A>.
Users need not be aware of the details of this representation,
because associated routines are provided to work with&nbsp;<B><I>Z</I></B>:
xORMRZ<A NAME="2780"></A><A NAME="2781"></A> (or
xUNMRZ<A NAME="2782"></A><A NAME="2783"></A>) can pre- or post-multiply
a given matrix by <B><I>Z</I></B> or <B><I>Z</I><SUP><I>T</I></SUP></B>
(<B><I>Z</I><SUP><I>H</I></SUP></B> if complex).

<P>
The subroutine xTZRZF is a faster and blocked version of xTZRQF.
xTZRQF has been retained for compatibility
with Release 2.0 of LAPACK, but we omit references to this routine
in the remainder of this users' guide.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4752"
 HREF="node44.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4746"
 HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4740"
 HREF="node42.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4748"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4750"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4753"
 HREF="node44.html">Other Factorizations</A>
<B> Up:</B> <A NAME="tex2html4747"
 HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4741"
 HREF="node42.html">QR Factorization with Column</A>
 &nbsp <B>  <A NAME="tex2html4749"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4751"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>