1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Complete Orthogonal Factorization</TITLE>
<META NAME="description" CONTENT="Complete Orthogonal Factorization">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node44.html">
<LINK REL="previous" HREF="node42.html">
<LINK REL="up" HREF="node39.html">
<LINK REL="next" HREF="node44.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4752"
HREF="node44.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4746"
HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4740"
HREF="node42.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4748"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4750"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4753"
HREF="node44.html">Other Factorizations</A>
<B> Up:</B> <A NAME="tex2html4747"
HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4741"
HREF="node42.html">QR Factorization with Column</A>
  <B> <A NAME="tex2html4749"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4751"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03242400000000000000">
Complete Orthogonal Factorization</A>
</H3>
<P>
The <B><I>QR</I></B> factorization with column pivoting does not enable us to compute
a <I>minimum norm</I> solution to a rank-deficient linear least squares problem,
<A NAME="2737"></A>
unless <B><I>R</I><SUB>12</SUB> = 0</B>. However,
by applying further orthogonal (or unitary) transformations<A NAME="2739"></A>
from the right to the upper trapezoidal matrix
<!-- MATH
$\left( \begin{array}{cc}R_{11} & R_{12}\end{array} \right)$
-->
<IMG
WIDTH="110" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
SRC="img118.png"
ALT="$\left( \begin{array}{cc}R_{11} & R_{12}\end{array} \right)$">,
using the routine xTZRQF (or xTZRZF), <B><I>R</I><SUB>12</SUB></B> can be eliminated:
<A NAME="2746"></A><A NAME="2747"></A><A NAME="2748"></A><A NAME="2749"></A>
<A NAME="2750"></A><A NAME="2751"></A><A NAME="2752"></A><A NAME="2753"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left( \begin{array}{cc}R_{11} & R_{12}\end{array}\right) Z =
\left( \begin{array}{cc}T_{11} & 0\end{array}\right) .
\end{displaymath}
-->
<IMG
WIDTH="234" HEIGHT="37" BORDER="0"
SRC="img119.png"
ALT="\begin{displaymath}
\left( \begin{array}{cc}R_{11} & R_{12}\end{array}\right) Z =
\left( \begin{array}{cc}T_{11} & 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
This gives the
<B>complete orthogonal
factorization</B><A NAME="2764"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A P = Q \left(
\begin{array}{cc}T_{11} & 0 \\0 & 0\end{array}
\right) Z^{T}
\end{displaymath}
-->
<IMG
WIDTH="184" HEIGHT="54" BORDER="0"
SRC="img120.png"
ALT="\begin{displaymath}
A P = Q \left(
\begin{array}{cc}T_{11} & 0 \\ 0 & 0\end{array}\right) Z^{T}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
from which the minimum norm solution<A NAME="2770"></A> can be obtained as
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = P Z \left( \begin{array}{c} T_{11}^{-1} \hat{c}_1 \\0\end{array}\right) .
\end{displaymath}
-->
<IMG
WIDTH="156" HEIGHT="54" BORDER="0"
SRC="img121.png"
ALT="\begin{displaymath}
x = P Z \left( \begin{array}{c} T_{11}^{-1} \hat{c}_1 \\ 0\end{array}\right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<P>
The matrix <B><I>Z</I></B> is not
formed explicitly, but is represented as a product of elementary
reflectors,
<A NAME="2777"></A>
<A NAME="2778"></A>
as described in section <A HREF="node128.html#secorthog">5.4</A>.
Users need not be aware of the details of this representation,
because associated routines are provided to work with <B><I>Z</I></B>:
xORMRZ<A NAME="2780"></A><A NAME="2781"></A> (or
xUNMRZ<A NAME="2782"></A><A NAME="2783"></A>) can pre- or post-multiply
a given matrix by <B><I>Z</I></B> or <B><I>Z</I><SUP><I>T</I></SUP></B>
(<B><I>Z</I><SUP><I>H</I></SUP></B> if complex).
<P>
The subroutine xTZRZF is a faster and blocked version of xTZRQF.
xTZRQF has been retained for compatibility
with Release 2.0 of LAPACK, but we omit references to this routine
in the remainder of this users' guide.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4752"
HREF="node44.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4746"
HREF="node39.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4740"
HREF="node42.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4748"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4750"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4753"
HREF="node44.html">Other Factorizations</A>
<B> Up:</B> <A NAME="tex2html4747"
HREF="node39.html">Orthogonal Factorizations and Linear</A>
<B> Previous:</B> <A NAME="tex2html4741"
HREF="node42.html">QR Factorization with Column</A>
  <B> <A NAME="tex2html4749"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4751"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|