1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Symmetric Eigenproblems</TITLE>
<META NAME="description" CONTENT="Symmetric Eigenproblems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node49.html">
<LINK REL="previous" HREF="node45.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node49.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4820"
HREF="node49.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4814"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4808"
HREF="node47.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4816"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4818"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4821"
HREF="node49.html">Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4815"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4809"
HREF="node47.html">Generalized RQ Factorization</A>
  <B> <A NAME="tex2html4817"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4819"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03244000000000000000"></A><A NAME="subseccompsep"></A>
<BR>
Symmetric Eigenproblems
</H2>
<P>
Let <B><I>A</I></B> be a real symmetric<A NAME="3023"></A><A NAME="3024"></A> or
complex Hermitian <B><I>n</I></B>-by-<B><I>n</I></B> matrix.
A scalar <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
is called an <B>eigenvalue</B><A NAME="3026"></A> and a nonzero column vector
<B><I>z</I></B> the corresponding <B>eigenvector</B><A NAME="3028"></A> if
<!-- MATH
$Az = \lambda z$
-->
<IMG
WIDTH="69" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img146.png"
ALT="$Az = \lambda z$">.
<IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
is
always real when <B><I>A</I></B> is real symmetric or complex Hermitian.
<P>
The basic task of the symmetric eigenproblem routines is to compute values of <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
and, optionally, corresponding vectors <B><I>z</I></B> for a given matrix <B><I>A</I></B>.
<P>
This computation proceeds in the following stages:
<P>
<DL COMPACT>
<DT>1.
<DD>The real symmetric or complex Hermitian matrix <B><I>A</I></B> is reduced to
<B>real tridiagonal form</B><A NAME="3031"></A>
<A NAME="3032"></A><B><I>T</I></B>.
If <B><I>A</I></B> is real symmetric this decomposition is <B><I>A</I>=<I>QTQ</I><SUP><I>T</I></SUP></B> with <B><I>Q</I></B> orthogonal
and <B><I>T</I></B> symmetric tridiagonal.
If <B><I>A</I></B> is complex Hermitian, the
decomposition is <B><I>A</I>=<I>QTQ</I><SUP><I>H</I></SUP></B> with <B><I>Q</I></B> unitary and <B><I>T</I></B>, as before,
<I>real</I> symmetric tridiagonal<A NAME="3034"></A>.
<P>
<DT>2.
<DD>Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix
<B><I>T</I></B> are computed.
If all eigenvalues and eigenvectors are computed, this is equivalent to
factorizing <B><I>T</I></B> as
<!-- MATH
$T = S \Lambda S^T$
-->
<IMG
WIDTH="86" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img147.png"
ALT="$T = S \Lambda S^T$">,
where <B><I>S</I></B> is orthogonal and <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$\Lambda$">
is diagonal.
The diagonal entries of <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$\Lambda$">
are the eigenvalues of <B><I>T</I></B>, which are also
the eigenvalues of <B><I>A</I></B>, and the
columns of <B><I>S</I></B> are the eigenvectors of <B><I>T</I></B>; the eigenvectors of <B><I>A</I></B> are
the columns of <B><I>Z</I>=<I>QS</I></B>, so that
<!-- MATH
$A=Z \Lambda Z^T$
-->
<IMG
WIDTH="90" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img148.png"
ALT="$A=Z \Lambda Z^T$">
(<IMG
WIDTH="56" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img149.png"
ALT="$Z \Lambda Z^H$">
when
<B><I>A</I></B> is complex Hermitian).
<P>
</DL>
<P>
In the real case, the decomposition <B><I>A</I> = <I>Q T Q</I><SUP><I>T</I></SUP></B> is computed by one
of the routines xSYTRD<A NAME="3036"></A><A NAME="3037"></A>, xSPTRD, or xSBTRD,
<A NAME="3038"></A><A NAME="3039"></A><A NAME="3040"></A><A NAME="3041"></A>
depending on how the matrix is
stored (see Table <A HREF="node48.html#tabcompeig">2.10</A>). The complex analogues of these routines
are called xHETRD, xHPTRD, and xHBTRD.
<A NAME="3043"></A><A NAME="3044"></A><A NAME="3045"></A><A NAME="3046"></A>
<A NAME="3047"></A><A NAME="3048"></A>
The routine xSYTRD (or xHETRD) represents the
matrix <B><I>Q</I></B> as a product of elementary reflectors,
as described in section <A HREF="node128.html#secorthog">5.4</A>.
The routine xORGTR<A NAME="3050"></A><A NAME="3051"></A> (or in the complex case xUNMTR)<A NAME="3052"></A><A NAME="3053"></A> is
provided to form <B><I>Q</I></B> explicitly;
this is needed in particular
before calling xSTEQR<A NAME="3054"></A><A NAME="3055"></A><A NAME="3056"></A><A NAME="3057"></A> to compute all the eigenvectors of <B><I>A</I></B>
by the <B><I>QR</I></B> algorithm.
The routine xORMTR<A NAME="3058"></A><A NAME="3059"></A> (or in the complex case xUNMTR)
<A NAME="3060"></A><A NAME="3061"></A>
is provided to multiply another matrix by <B><I>Q</I></B>
without forming <B><I>Q</I></B> explicitly; this can be used to transform
eigenvectors of <B><I>T</I></B> computed by xSTEIN, back to eigenvectors of <B><I>A</I></B>.
<A NAME="3062"></A><A NAME="3063"></A><A NAME="3064"></A><A NAME="3065"></A>
<P>
When packed storage is used, the corresponding routines for forming <B><I>Q</I></B>
or multiplying another matrix by <B><I>Q</I></B> are xOPGTR and xOPMTR
<A NAME="3066"></A><A NAME="3067"></A><A NAME="3068"></A><A NAME="3069"></A>
(in the complex case, xUPGTR and xUPMTR).
<A NAME="3070"></A><A NAME="3071"></A>
<P>
When <B><I>A</I></B> is banded and xSBTRD<A NAME="3072"></A><A NAME="3073"></A> (or xHBTRD)
<A NAME="3074"></A><A NAME="3075"></A> is used to reduce it to
tridiagonal form<A NAME="3076"></A><A NAME="3077"></A>, <B><I>Q</I></B> is determined as a product of Givens rotations<A NAME="3078"></A>, not
as a product of elementary reflectors; if <B><I>Q</I></B> is required, it must be formed
explicitly by the reduction routine.
xSBTRD is based on the vectorizable algorithm due to Kaufman [<A
HREF="node151.html#vbandr">77</A>].
<P>
There are several routines for computing eigenvalues<A NAME="3080"></A> and eigenvectors<A NAME="3081"></A> of <B><I>T</I></B>,
to cover the cases of computing some or all of the eigenvalues, and some or
all of the eigenvectors. In addition, some routines run faster in some
computing environments or for some matrices than for others. Also,
some routines are more accurate than other routines.
<P>
See section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A> for a discussion.
<P>
<DL>
<DT><STRONG>xSTEQR</STRONG>
<DD><A NAME="3084"></A><A NAME="3085"></A><A NAME="3086"></A><A NAME="3087"></A>
This routine uses the implicitly shifted <B><I>QR</I></B> algorithm.
<A NAME="3088"></A><A NAME="3089"></A>
It switches between the <B><I>QR</I></B> and <B><I>QL</I></B> variants in order to
handle graded matrices more effectively than the simple <B><I>QL</I></B> variant that
is provided by the EISPACK routines IMTQL1 and IMTQL2. See
[<A
HREF="node151.html#greenbaumdongarra">56</A>] for details.
This routine is used by drivers with names ending in -EV and -EVX to compute
all the eigenvalues and eigenvectors (see section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A>).
<P>
<DT><STRONG>xSTERF</STRONG>
<DD><A NAME="3092"></A><A NAME="3093"></A>
This routine uses a square-root free version of the <B><I>QR</I></B>
algorithm, also switching between <B><I>QR</I></B> and <B><I>QL</I></B> variants, and can only
compute all the eigenvalues. See [<A
HREF="node151.html#greenbaumdongarra">56</A>] for details.
This routine is used by drivers with names ending in -EV and -EVX to compute
all the eigenvalues and no eigenvectors (see section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A>).
<P>
<DT><STRONG>xSTEDC</STRONG>
<DD><A NAME="3096"></A><A NAME="3097"></A><A NAME="3098"></A><A NAME="3099"></A>
This routine uses Cuppen's divide and conquer algorithm
<A NAME="3100"></A>
to find the eigenvalues and the eigenvectors (if only eigenvalues
are desired, xSTEDC calls xSTERF). xSTEDC can be many times faster than
xSTEQR for large matrices but needs more work space (<B>2<I>n</I><SUP>2</SUP></B> or <B>3<I>n</I><SUP>2</SUP></B>).
See [<A
HREF="node151.html#cuppen">20</A>,<A
HREF="node151.html#gueisenstat">57</A>,<A
HREF="node151.html#rutter">89</A>] and section <A HREF="node70.html#subsecblockeig">3.4.3</A>
for details.
This routine is used by drivers with names ending in -EVD to compute all the
eigenvalues and eigenvectors (see section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A>).
<P>
<DT><STRONG>xSTEGR</STRONG>
<DD><A NAME="3104"></A><A NAME="3105"></A><A NAME="3106"></A><A NAME="3107"></A>
This routine uses the relatively robust representation (RRR) algorithm to
find eigenvalues and eigenvectors. This routine uses an <B><I>LDL</I><SUP><I>T</I></SUP></B> factorization
of a number of translates <B><I>T</I> - <I>sI</I></B> of <B><I>T</I></B>, for one shift <B><I>s</I></B> near each cluster
of eigenvalues. For each translate the algorithm computes very accurate
eigenpairs for the tiny eigenvalues. xSTEGR is faster than all the
other routines except in a few cases, and uses the least workspace.
See [<A
HREF="node151.html#holygrail">35</A>] and section <A HREF="node70.html#subsecblockeig">3.4.3</A> for details.
<P>
<DT><STRONG>xPTEQR</STRONG>
<DD><A NAME="3110"></A><A NAME="3111"></A><A NAME="3112"></A><A NAME="3113"></A>
This routine applies to symmetric <I>positive definite</I>
tridiagonal
matrices only. It uses a combination of Cholesky factorization
and bidiagonal <B><I>QR</I></B> iteration
(see xBDSQR) and may be significantly more accurate than the other routines
except xSTEGR.
See [<A
HREF="node151.html#barlowdemmel">14</A>,<A
HREF="node151.html#demmelkahan">32</A>,<A
HREF="node151.html#deiftdemmellitomei">23</A>,<A
HREF="node151.html#fernandoparlett">51</A>]
for details.
<P>
<DT><STRONG>xSTEBZ</STRONG>
<DD><A NAME="3116"></A><A NAME="3117"></A>
This routine uses bisection to compute some or all of the
eigenvalues. Options provide for computing all the eigenvalues in a real
interval or all the eigenvalues
from the <B><I>i</I><SUP><I>th</I></SUP></B> to the <B><I>j</I><SUP><I>th</I></SUP></B> largest.
It can be highly accurate, but may be adjusted to run faster if lower
accuracy is acceptable.
This routine is used by drivers with names ending in -EVX.
<P>
<DT><STRONG>xSTEIN</STRONG>
<DD><A NAME="3120"></A><A NAME="3121"></A><A NAME="3122"></A><A NAME="3123"></A>
Given accurate eigenvalues, this routine uses inverse
iteration<A NAME="3124"></A> to compute some or all of the eigenvectors.
This routine is used by drivers with names ending in -EVX.
</DL>
<P>
See Table <A HREF="node48.html#tabcompeig">2.10</A>.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabcompeig"></A>
<DIV ALIGN="CENTER">
<A NAME="3128"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.10:</STRONG>
Computational routines for the symmetric eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">dense symmetric</TD>
<TD ALIGN="LEFT">tridiagonal reduction</TD>
<TD ALIGN="LEFT">SSYTRD<A NAME="3140"></A></TD>
<TD ALIGN="LEFT">CHETRD<A NAME="3141"></A></TD>
<TD ALIGN="LEFT">DSYTRD<A NAME="3142"></A></TD>
<TD ALIGN="LEFT">ZHETRD<A NAME="3143"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(or Hermitian)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">packed symmetric</TD>
<TD ALIGN="LEFT">tridiagonal reduction</TD>
<TD ALIGN="LEFT">SSPTRD<A NAME="3144"></A></TD>
<TD ALIGN="LEFT">CHPTRD<A NAME="3145"></A></TD>
<TD ALIGN="LEFT">DSPTRD<A NAME="3146"></A></TD>
<TD ALIGN="LEFT">ZHPTRD<A NAME="3147"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(or Hermitian)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">band symmetric</TD>
<TD ALIGN="LEFT">tridiagonal reduction</TD>
<TD ALIGN="LEFT">SSBTRD<A NAME="3148"></A></TD>
<TD ALIGN="LEFT">CHBTRD<A NAME="3149"></A></TD>
<TD ALIGN="LEFT">DSBTRD<A NAME="3150"></A></TD>
<TD ALIGN="LEFT">ZHBTRD<A NAME="3151"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(or Hermitian)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">orthogonal/unitary</TD>
<TD ALIGN="LEFT">generate matrix after</TD>
<TD ALIGN="LEFT">SORGTR<A NAME="3152"></A></TD>
<TD ALIGN="LEFT">CUNGTR<A NAME="3153"></A></TD>
<TD ALIGN="LEFT">DORGTR<A NAME="3154"></A></TD>
<TD ALIGN="LEFT">ZUNGTR<A NAME="3155"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">reduction by xSYTRD</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">multiply matrix after</TD>
<TD ALIGN="LEFT">SORMTR<A NAME="3156"></A></TD>
<TD ALIGN="LEFT">CUNMTR<A NAME="3157"></A></TD>
<TD ALIGN="LEFT">DORMTR<A NAME="3158"></A></TD>
<TD ALIGN="LEFT">ZUNMTR<A NAME="3159"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">reduction by xSYTRD</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">orthogonal/unitary</TD>
<TD ALIGN="LEFT">generate matrix after</TD>
<TD ALIGN="LEFT">SOPGTR<A NAME="3160"></A></TD>
<TD ALIGN="LEFT">CUPGTR<A NAME="3161"></A></TD>
<TD ALIGN="LEFT">DOPGTR<A NAME="3162"></A></TD>
<TD ALIGN="LEFT">ZUPGTR<A NAME="3163"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(packed storage)</TD>
<TD ALIGN="LEFT">reduction by xSPTRD</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">multiply matrix after</TD>
<TD ALIGN="LEFT">SOPMTR<A NAME="3164"></A></TD>
<TD ALIGN="LEFT">CUPMTR<A NAME="3165"></A></TD>
<TD ALIGN="LEFT">DOPMTR<A NAME="3166"></A></TD>
<TD ALIGN="LEFT">ZUPMTR<A NAME="3167"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">reduction by xSPTRD</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric</TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SSTEQR<A NAME="3168"></A></TD>
<TD ALIGN="LEFT">CSTEQR<A NAME="3169"></A></TD>
<TD ALIGN="LEFT">DSTEQR<A NAME="3170"></A></TD>
<TD ALIGN="LEFT">ZSTEQR<A NAME="3171"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">tridiagonal</TD>
<TD ALIGN="LEFT">eigenvectors via QR</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvalues only</TD>
<TD ALIGN="LEFT">SSTERF<A NAME="3172"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">DSTERF<A NAME="3173"></A></TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">via root-free QR</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SSTEDC<A NAME="3174"></A></TD>
<TD ALIGN="LEFT">CSTEDC<A NAME="3175"></A></TD>
<TD ALIGN="LEFT">DSTEDC<A NAME="3176"></A></TD>
<TD ALIGN="LEFT">ZSTEDC<A NAME="3177"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvectors via</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">divide and conquer</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SSTEGR<A NAME="3178"></A></TD>
<TD ALIGN="LEFT">CSTEGR<A NAME="3179"></A></TD>
<TD ALIGN="LEFT">DSTEGR<A NAME="3180"></A></TD>
<TD ALIGN="LEFT">ZSTEGR<A NAME="3181"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvectors via</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">RRR</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvalues only</TD>
<TD ALIGN="LEFT">SSTEBZ<A NAME="3182"></A></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">DSTEBZ<A NAME="3183"></A></TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">via bisection</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvectors by</TD>
<TD ALIGN="LEFT">SSTEIN<A NAME="3184"></A></TD>
<TD ALIGN="LEFT">CSTEIN<A NAME="3185"></A></TD>
<TD ALIGN="LEFT">DSTEIN<A NAME="3186"></A></TD>
<TD ALIGN="LEFT">ZSTEIN<A NAME="3187"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">inverse iteration</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric</TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SPTEQR<A NAME="3188"></A></TD>
<TD ALIGN="LEFT">CPTEQR<A NAME="3189"></A></TD>
<TD ALIGN="LEFT">DPTEQR<A NAME="3190"></A></TD>
<TD ALIGN="LEFT">ZPTEQR<A NAME="3191"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">tridiagonal</TD>
<TD ALIGN="LEFT">eigenvectors</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">positive definite</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4820"
HREF="node49.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4814"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4808"
HREF="node47.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4816"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4818"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4821"
HREF="node49.html">Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4815"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4809"
HREF="node47.html">Generalized RQ Factorization</A>
  <B> <A NAME="tex2html4817"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4819"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|