File: node48.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (576 lines) | stat: -rw-r--r-- 21,031 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Symmetric Eigenproblems</TITLE>
<META NAME="description" CONTENT="Symmetric Eigenproblems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node49.html">
<LINK REL="previous" HREF="node45.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node49.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4820"
 HREF="node49.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4814"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4808"
 HREF="node47.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4816"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4818"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4821"
 HREF="node49.html">Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4815"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4809"
 HREF="node47.html">Generalized RQ Factorization</A>
 &nbsp <B>  <A NAME="tex2html4817"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4819"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03244000000000000000"></A><A NAME="subseccompsep"></A>
<BR>
Symmetric Eigenproblems
</H2>

<P>
Let <B><I>A</I></B> be a real symmetric<A NAME="3023"></A><A NAME="3024"></A> or
complex Hermitian <B><I>n</I></B>-by-<B><I>n</I></B> matrix.
A scalar <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
is called an <B>eigenvalue</B><A NAME="3026"></A> and a nonzero column vector
<B><I>z</I></B> the corresponding <B>eigenvector</B><A NAME="3028"></A> if 
<!-- MATH
 $Az = \lambda z$
 -->
<IMG
 WIDTH="69" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img146.png"
 ALT="$Az = \lambda z$">.
<IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
is
always real when <B><I>A</I></B> is real symmetric or complex Hermitian.

<P>
The basic task of the symmetric eigenproblem routines is to compute values of <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
and, optionally, corresponding vectors <B><I>z</I></B> for a given matrix <B><I>A</I></B>.

<P>
This computation proceeds in the following stages:

<P>
<DL COMPACT>
<DT>1.
<DD>The real symmetric or complex Hermitian matrix <B><I>A</I></B> is reduced to
<B>real tridiagonal form</B><A NAME="3031"></A>
<A NAME="3032"></A><B><I>T</I></B>.
If <B><I>A</I></B> is real symmetric this decomposition is <B><I>A</I>=<I>QTQ</I><SUP><I>T</I></SUP></B> with <B><I>Q</I></B> orthogonal
and <B><I>T</I></B> symmetric tridiagonal.
If <B><I>A</I></B> is complex Hermitian, the
decomposition is <B><I>A</I>=<I>QTQ</I><SUP><I>H</I></SUP></B> with <B><I>Q</I></B> unitary and <B><I>T</I></B>, as before,
<I>real</I> symmetric tridiagonal<A NAME="3034"></A>.
<P>
<DT>2.
<DD>Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix
<B><I>T</I></B> are computed.
If all eigenvalues and eigenvectors are computed, this is equivalent to
factorizing <B><I>T</I></B> as

<!-- MATH
 $T = S \Lambda S^T$
 -->
<IMG
 WIDTH="86" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img147.png"
 ALT="$T = S \Lambda S^T$">,
where <B><I>S</I></B> is orthogonal and <IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img28.png"
 ALT="$\Lambda$">
is diagonal.
The diagonal entries of <IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img28.png"
 ALT="$\Lambda$">
are the eigenvalues of <B><I>T</I></B>, which are also
the eigenvalues of <B><I>A</I></B>, and the
columns of <B><I>S</I></B> are the eigenvectors of <B><I>T</I></B>; the eigenvectors of <B><I>A</I></B> are
the columns of <B><I>Z</I>=<I>QS</I></B>, so that 
<!-- MATH
 $A=Z \Lambda Z^T$
 -->
<IMG
 WIDTH="90" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img148.png"
 ALT="$A=Z \Lambda Z^T$">
(<IMG
 WIDTH="56" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img149.png"
 ALT="$Z \Lambda Z^H$">
when
<B><I>A</I></B> is complex Hermitian).

<P>
</DL>

<P>
In the real case, the decomposition <B><I>A</I> = <I>Q T Q</I><SUP><I>T</I></SUP></B> is computed by one
of the routines xSYTRD<A NAME="3036"></A><A NAME="3037"></A>, xSPTRD, or xSBTRD,
<A NAME="3038"></A><A NAME="3039"></A><A NAME="3040"></A><A NAME="3041"></A>
depending on how the matrix is
stored (see Table&nbsp;<A HREF="node48.html#tabcompeig">2.10</A>). The complex analogues of these routines
are called xHETRD, xHPTRD, and xHBTRD.
<A NAME="3043"></A><A NAME="3044"></A><A NAME="3045"></A><A NAME="3046"></A>
<A NAME="3047"></A><A NAME="3048"></A>
The routine xSYTRD (or xHETRD) represents the
matrix <B><I>Q</I></B> as a product of elementary reflectors,
as described in section&nbsp;<A HREF="node128.html#secorthog">5.4</A>.
The routine xORGTR<A NAME="3050"></A><A NAME="3051"></A> (or in the complex case xUNMTR)<A NAME="3052"></A><A NAME="3053"></A> is
provided to form <B><I>Q</I></B> explicitly;
this is needed in particular
before calling xSTEQR<A NAME="3054"></A><A NAME="3055"></A><A NAME="3056"></A><A NAME="3057"></A> to compute all the eigenvectors of <B><I>A</I></B>
by the <B><I>QR</I></B> algorithm.
The routine xORMTR<A NAME="3058"></A><A NAME="3059"></A> (or in the complex case xUNMTR)
<A NAME="3060"></A><A NAME="3061"></A>
is provided to multiply another matrix by <B><I>Q</I></B>
without forming <B><I>Q</I></B> explicitly; this can be used to transform
eigenvectors of <B><I>T</I></B> computed by xSTEIN, back to eigenvectors of <B><I>A</I></B>.
<A NAME="3062"></A><A NAME="3063"></A><A NAME="3064"></A><A NAME="3065"></A>

<P>
When packed storage is used, the corresponding routines for forming <B><I>Q</I></B>
or multiplying another matrix by <B><I>Q</I></B> are xOPGTR and xOPMTR
<A NAME="3066"></A><A NAME="3067"></A><A NAME="3068"></A><A NAME="3069"></A>
(in the complex case, xUPGTR and xUPMTR).
<A NAME="3070"></A><A NAME="3071"></A>

<P>
When <B><I>A</I></B> is banded and xSBTRD<A NAME="3072"></A><A NAME="3073"></A> (or xHBTRD)
<A NAME="3074"></A><A NAME="3075"></A> is used to reduce it to
tridiagonal form<A NAME="3076"></A><A NAME="3077"></A>, <B><I>Q</I></B> is determined as a product of Givens rotations<A NAME="3078"></A>, not
as a product of elementary reflectors; if <B><I>Q</I></B> is required, it must be formed
explicitly by the reduction routine.
xSBTRD is based on the vectorizable algorithm due to Kaufman &nbsp;[<A
 HREF="node151.html#vbandr">77</A>].

<P>
There are several routines for computing eigenvalues<A NAME="3080"></A> and eigenvectors<A NAME="3081"></A> of <B><I>T</I></B>,
to cover the cases of computing some or all of the eigenvalues, and some or
all of the eigenvectors. In addition, some routines run faster in some
computing environments or for some matrices than for others. Also,
some routines are more accurate than other routines.

<P>
See section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A> for a discussion.

<P>
<DL>
<DT><STRONG>xSTEQR</STRONG>
<DD><A NAME="3084"></A><A NAME="3085"></A><A NAME="3086"></A><A NAME="3087"></A>
This routine uses the implicitly shifted <B><I>QR</I></B> algorithm.
<A NAME="3088"></A><A NAME="3089"></A>
It switches between the <B><I>QR</I></B> and <B><I>QL</I></B> variants in order to
handle graded matrices more effectively than the simple <B><I>QL</I></B> variant that
is provided by the EISPACK routines IMTQL1 and IMTQL2. See
[<A
 HREF="node151.html#greenbaumdongarra">56</A>] for details.
This routine is used by drivers with names ending in -EV and -EVX to compute
all the eigenvalues and eigenvectors (see section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A>).
<P>
<DT><STRONG>xSTERF</STRONG>
<DD><A NAME="3092"></A><A NAME="3093"></A>
This routine uses a square-root free version of the <B><I>QR</I></B>
algorithm, also switching between <B><I>QR</I></B> and <B><I>QL</I></B> variants, and can only
compute all the eigenvalues. See [<A
 HREF="node151.html#greenbaumdongarra">56</A>] for details.
This routine is used by drivers with names ending in -EV and -EVX to compute
all the eigenvalues and no eigenvectors (see section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A>).

<P>
<DT><STRONG>xSTEDC</STRONG>
<DD><A NAME="3096"></A><A NAME="3097"></A><A NAME="3098"></A><A NAME="3099"></A>
This routine uses Cuppen's divide and conquer algorithm
<A NAME="3100"></A>
to find the eigenvalues and the eigenvectors (if only eigenvalues
are desired, xSTEDC calls xSTERF). xSTEDC can be many times faster than
xSTEQR for large matrices but needs more work space (<B>2<I>n</I><SUP>2</SUP></B> or <B>3<I>n</I><SUP>2</SUP></B>).
See [<A
 HREF="node151.html#cuppen">20</A>,<A
 HREF="node151.html#gueisenstat">57</A>,<A
 HREF="node151.html#rutter">89</A>] and section <A HREF="node70.html#subsecblockeig">3.4.3</A>
for details.
This routine is used by drivers with names ending in -EVD to compute all the
eigenvalues and eigenvectors (see section <A HREF="node30.html#subsecdriveeigSEP">2.3.4.1</A>).

<P>
<DT><STRONG>xSTEGR</STRONG>
<DD><A NAME="3104"></A><A NAME="3105"></A><A NAME="3106"></A><A NAME="3107"></A>
This routine uses the relatively robust representation (RRR) algorithm to
find eigenvalues and eigenvectors. This routine uses an <B><I>LDL</I><SUP><I>T</I></SUP></B> factorization
of a number of translates <B><I>T</I> - <I>sI</I></B> of <B><I>T</I></B>, for one shift <B><I>s</I></B> near each cluster
of eigenvalues. For each translate the algorithm computes very accurate
eigenpairs for the tiny eigenvalues. xSTEGR is faster than all the
other routines except in a few cases, and uses the least workspace.
See [<A
 HREF="node151.html#holygrail">35</A>] and section <A HREF="node70.html#subsecblockeig">3.4.3</A> for details.

<P>
<DT><STRONG>xPTEQR</STRONG>
<DD><A NAME="3110"></A><A NAME="3111"></A><A NAME="3112"></A><A NAME="3113"></A>
This routine applies to symmetric <I>positive definite</I>
tridiagonal
matrices only. It uses a combination of Cholesky factorization
and bidiagonal <B><I>QR</I></B> iteration
(see xBDSQR) and may be significantly more accurate than the other routines
except xSTEGR.
See [<A
 HREF="node151.html#barlowdemmel">14</A>,<A
 HREF="node151.html#demmelkahan">32</A>,<A
 HREF="node151.html#deiftdemmellitomei">23</A>,<A
 HREF="node151.html#fernandoparlett">51</A>]
for details.

<P>
<DT><STRONG>xSTEBZ</STRONG>
<DD><A NAME="3116"></A><A NAME="3117"></A>
This routine uses bisection to compute some or all of the
eigenvalues. Options provide for computing all the eigenvalues in a real
interval or all the eigenvalues
from the <B><I>i</I><SUP><I>th</I></SUP></B> to the <B><I>j</I><SUP><I>th</I></SUP></B> largest.
It can be highly accurate, but may be adjusted to run faster if lower
accuracy is acceptable.
This routine is used by drivers with names ending in -EVX.

<P>
<DT><STRONG>xSTEIN</STRONG>
<DD><A NAME="3120"></A><A NAME="3121"></A><A NAME="3122"></A><A NAME="3123"></A>
Given accurate eigenvalues, this routine uses inverse
iteration<A NAME="3124"></A> to compute some or all of the eigenvectors.
This routine is used by drivers with names ending in -EVX.
</DL>

<P>
See Table <A HREF="node48.html#tabcompeig">2.10</A>.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabcompeig"></A>
<DIV ALIGN="CENTER">
<A NAME="3128"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.10:</STRONG>
Computational routines for the symmetric eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">dense symmetric</TD>
<TD ALIGN="LEFT">tridiagonal reduction</TD>
<TD ALIGN="LEFT">SSYTRD<A NAME="3140"></A></TD>
<TD ALIGN="LEFT">CHETRD<A NAME="3141"></A></TD>
<TD ALIGN="LEFT">DSYTRD<A NAME="3142"></A></TD>
<TD ALIGN="LEFT">ZHETRD<A NAME="3143"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(or Hermitian)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">packed symmetric</TD>
<TD ALIGN="LEFT">tridiagonal reduction</TD>
<TD ALIGN="LEFT">SSPTRD<A NAME="3144"></A></TD>
<TD ALIGN="LEFT">CHPTRD<A NAME="3145"></A></TD>
<TD ALIGN="LEFT">DSPTRD<A NAME="3146"></A></TD>
<TD ALIGN="LEFT">ZHPTRD<A NAME="3147"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(or Hermitian)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">band symmetric</TD>
<TD ALIGN="LEFT">tridiagonal reduction</TD>
<TD ALIGN="LEFT">SSBTRD<A NAME="3148"></A></TD>
<TD ALIGN="LEFT">CHBTRD<A NAME="3149"></A></TD>
<TD ALIGN="LEFT">DSBTRD<A NAME="3150"></A></TD>
<TD ALIGN="LEFT">ZHBTRD<A NAME="3151"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(or Hermitian)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">orthogonal/unitary</TD>
<TD ALIGN="LEFT">generate matrix after</TD>
<TD ALIGN="LEFT">SORGTR<A NAME="3152"></A></TD>
<TD ALIGN="LEFT">CUNGTR<A NAME="3153"></A></TD>
<TD ALIGN="LEFT">DORGTR<A NAME="3154"></A></TD>
<TD ALIGN="LEFT">ZUNGTR<A NAME="3155"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">reduction by xSYTRD</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">multiply matrix after</TD>
<TD ALIGN="LEFT">SORMTR<A NAME="3156"></A></TD>
<TD ALIGN="LEFT">CUNMTR<A NAME="3157"></A></TD>
<TD ALIGN="LEFT">DORMTR<A NAME="3158"></A></TD>
<TD ALIGN="LEFT">ZUNMTR<A NAME="3159"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">reduction by xSYTRD</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">orthogonal/unitary</TD>
<TD ALIGN="LEFT">generate matrix after</TD>
<TD ALIGN="LEFT">SOPGTR<A NAME="3160"></A></TD>
<TD ALIGN="LEFT">CUPGTR<A NAME="3161"></A></TD>
<TD ALIGN="LEFT">DOPGTR<A NAME="3162"></A></TD>
<TD ALIGN="LEFT">ZUPGTR<A NAME="3163"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(packed storage)</TD>
<TD ALIGN="LEFT">reduction by xSPTRD</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">multiply matrix after</TD>
<TD ALIGN="LEFT">SOPMTR<A NAME="3164"></A></TD>
<TD ALIGN="LEFT">CUPMTR<A NAME="3165"></A></TD>
<TD ALIGN="LEFT">DOPMTR<A NAME="3166"></A></TD>
<TD ALIGN="LEFT">ZUPMTR<A NAME="3167"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">reduction by xSPTRD</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric</TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SSTEQR<A NAME="3168"></A></TD>
<TD ALIGN="LEFT">CSTEQR<A NAME="3169"></A></TD>
<TD ALIGN="LEFT">DSTEQR<A NAME="3170"></A></TD>
<TD ALIGN="LEFT">ZSTEQR<A NAME="3171"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">tridiagonal</TD>
<TD ALIGN="LEFT">eigenvectors via QR</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalues only</TD>
<TD ALIGN="LEFT">SSTERF<A NAME="3172"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DSTERF<A NAME="3173"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">via root-free QR</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SSTEDC<A NAME="3174"></A></TD>
<TD ALIGN="LEFT">CSTEDC<A NAME="3175"></A></TD>
<TD ALIGN="LEFT">DSTEDC<A NAME="3176"></A></TD>
<TD ALIGN="LEFT">ZSTEDC<A NAME="3177"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvectors via</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">divide and conquer</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SSTEGR<A NAME="3178"></A></TD>
<TD ALIGN="LEFT">CSTEGR<A NAME="3179"></A></TD>
<TD ALIGN="LEFT">DSTEGR<A NAME="3180"></A></TD>
<TD ALIGN="LEFT">ZSTEGR<A NAME="3181"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvectors via</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">RRR</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalues only</TD>
<TD ALIGN="LEFT">SSTEBZ<A NAME="3182"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DSTEBZ<A NAME="3183"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">via bisection</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvectors by</TD>
<TD ALIGN="LEFT">SSTEIN<A NAME="3184"></A></TD>
<TD ALIGN="LEFT">CSTEIN<A NAME="3185"></A></TD>
<TD ALIGN="LEFT">DSTEIN<A NAME="3186"></A></TD>
<TD ALIGN="LEFT">ZSTEIN<A NAME="3187"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">inverse iteration</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric</TD>
<TD ALIGN="LEFT">eigenvalues/</TD>
<TD ALIGN="LEFT">SPTEQR<A NAME="3188"></A></TD>
<TD ALIGN="LEFT">CPTEQR<A NAME="3189"></A></TD>
<TD ALIGN="LEFT">DPTEQR<A NAME="3190"></A></TD>
<TD ALIGN="LEFT">ZPTEQR<A NAME="3191"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">tridiagonal</TD>
<TD ALIGN="LEFT">eigenvectors</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">positive definite</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4820"
 HREF="node49.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4814"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4808"
 HREF="node47.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4816"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4818"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4821"
 HREF="node49.html">Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4815"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4809"
 HREF="node47.html">Generalized RQ Factorization</A>
 &nbsp <B>  <A NAME="tex2html4817"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4819"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>