File: node52.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (342 lines) | stat: -rw-r--r-- 11,993 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Invariant Subspaces and Condition Numbers</TITLE>
<META NAME="description" CONTENT="Invariant Subspaces and Condition Numbers">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node51.html">
<LINK REL="up" HREF="node49.html">
<LINK REL="next" HREF="node53.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4877"
 HREF="node53.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4871"
 HREF="node49.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4867"
 HREF="node51.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4873"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4875"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4878"
 HREF="node53.html">Singular Value Decomposition</A>
<B> Up:</B> <A NAME="tex2html4872"
 HREF="node49.html">Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4868"
 HREF="node51.html">Balancing</A>
 &nbsp <B>  <A NAME="tex2html4874"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4876"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03245300000000000000">
Invariant Subspaces and Condition Numbers</A>
</H3>

<P>
The Schur form<A NAME="3309"></A> depends on the order of the eigenvalues on the diagonal
of <B><I>T</I></B> and this may optionally be chosen by the user. Suppose the user chooses
that 
<!-- MATH
 $\lambda_1 , \ldots , \lambda_j$
 -->
<IMG
 WIDTH="78" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img154.png"
 ALT="$\lambda_1 , \ldots , \lambda_j$">,

<!-- MATH
 $1 \leq j \leq n$
 -->
<IMG
 WIDTH="78" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img155.png"
 ALT="$1 \leq j \leq n$">,
appear in the upper left
corner of <B><I>T</I></B>. Then the first <B><I>j</I></B> columns of <B><I>Z</I></B> span the <B>right invariant
subspace</B> of <B><I>A</I></B> corresponding to 
<!-- MATH
 $\lambda_1 , \ldots , \lambda_j$
 -->
<IMG
 WIDTH="78" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img154.png"
 ALT="$\lambda_1 , \ldots , \lambda_j$">.
<A NAME="3311"></A><A NAME="3312"></A>

<P>
The following routines perform this re-ordering and also
<A NAME="3313"></A>
compute condition numbers for eigenvalues, eigenvectors,
and invariant subspaces:

<P>
<DL COMPACT>
<DT>1.
<DD>xTREXC<A NAME="3315"></A><A NAME="3316"></A><A NAME="3317"></A><A NAME="3318"></A> will move an eigenvalue (or <B>2</B>-by-<B>2</B> block) on the diagonal of
the Schur form<A NAME="3319"></A> from its original position to any other position. It may be used to
choose the order in which eigenvalues appear in the Schur form.
<DT>2.
<DD>xTRSYL<A NAME="3320"></A><A NAME="3321"></A><A NAME="3322"></A><A NAME="3323"></A> solves
the Sylvester matrix equation<A NAME="3324"></A> <IMG
 WIDTH="122" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img156.png"
 ALT="$AX \pm XB=C$">
for <B><I>X</I></B>, given
matrices <B><I>A</I></B>, <B><I>B</I></B> and <B><I>C</I></B>, with <B><I>A</I></B> and <B><I>B</I></B> (quasi) triangular.
It is used in the routines xTRSNA and xTRSEN, but it is also of independent
interest.
<DT>3.
<DD>xTRSNA<A NAME="3325"></A><A NAME="3326"></A><A NAME="3327"></A><A NAME="3328"></A> computes the condition numbers of the eigenvalues and/or
right eigenvectors of a matrix <B><I>T</I></B> in Schur form.
<A NAME="3329"></A>
These are the same as the condition<A NAME="3330"></A>
numbers of the eigenvalues and right eigenvectors of the original matrix
<B><I>A</I></B> from which <B><I>T</I></B> is derived. The user may compute these condition numbers
for all eigenvalue/eigenvector pairs, or for any selected subset.
For more details, see section&nbsp;<A HREF="node91.html#secnonsym">4.8</A> and [<A
 HREF="node151.html#baidemmelmckenney">12</A>].
<P>
<DT>4.
<DD>xTRSEN<A NAME="3333"></A><A NAME="3334"></A><A NAME="3335"></A><A NAME="3336"></A> moves
<A NAME="3337"></A>
a selected subset of the eigenvalues of a matrix <B><I>T</I></B>
in Schur form to the upper left corner of <B><I>T</I></B>, and optionally computes
the condition numbers<A NAME="3338"></A> of their average value and of their right
invariant subspace. These are the same as the condition numbers of the
average eigenvalue and right invariant subspace of the original matrix <B><I>A</I></B>
from which <B><I>T</I></B> is derived.
For more details, see section&nbsp;<A HREF="node91.html#secnonsym">4.8</A> and
[<A
 HREF="node151.html#baidemmelmckenney">12</A>]
</DL>

<P>
See Table <A HREF="node52.html#tabcompeig2">2.11</A> for a complete list of the routines.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabcompeig2"></A>
<DIV ALIGN="CENTER">
<A NAME="3344"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.11:</STRONG>
Computational routines for the nonsymmetric eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">general</TD>
<TD ALIGN="LEFT">Hessenberg reduction</TD>
<TD ALIGN="LEFT">SGEHRD<A NAME="3356"></A></TD>
<TD ALIGN="LEFT">CGEHRD<A NAME="3357"></A></TD>
<TD ALIGN="LEFT">DGEHRD<A NAME="3358"></A></TD>
<TD ALIGN="LEFT">ZGEHRD<A NAME="3359"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">balancing</TD>
<TD ALIGN="LEFT">SGEBAL<A NAME="3360"></A></TD>
<TD ALIGN="LEFT">CGEBAL<A NAME="3361"></A></TD>
<TD ALIGN="LEFT">DGEBAL<A NAME="3362"></A></TD>
<TD ALIGN="LEFT">ZGEBAL<A NAME="3363"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">backtransforming</TD>
<TD ALIGN="LEFT">SGEBAK<A NAME="3364"></A></TD>
<TD ALIGN="LEFT">CGEBAK<A NAME="3365"></A></TD>
<TD ALIGN="LEFT">DGEBAK<A NAME="3366"></A></TD>
<TD ALIGN="LEFT">ZGEBAK<A NAME="3367"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">orthogonal/unitary</TD>
<TD ALIGN="LEFT">generate matrix after</TD>
<TD ALIGN="LEFT">SORGHR<A NAME="3368"></A></TD>
<TD ALIGN="LEFT">CUNGHR<A NAME="3369"></A></TD>
<TD ALIGN="LEFT">DORGHR<A NAME="3370"></A></TD>
<TD ALIGN="LEFT">ZUNGHR<A NAME="3371"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">Hessenberg reduction</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">multiply matrix after</TD>
<TD ALIGN="LEFT">SORMHR<A NAME="3372"></A></TD>
<TD ALIGN="LEFT">CUNMHR<A NAME="3373"></A></TD>
<TD ALIGN="LEFT">DORMHR<A NAME="3374"></A></TD>
<TD ALIGN="LEFT">ZUNMHR<A NAME="3375"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">Hessenberg reduction</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">Hessenberg</TD>
<TD ALIGN="LEFT">Schur factorization</TD>
<TD ALIGN="LEFT">SHSEQR<A NAME="3376"></A></TD>
<TD ALIGN="LEFT">CHSEQR<A NAME="3377"></A></TD>
<TD ALIGN="LEFT">DHSEQR<A NAME="3378"></A></TD>
<TD ALIGN="LEFT">ZHSEQR<A NAME="3379"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvectors by</TD>
<TD ALIGN="LEFT">SHSEIN<A NAME="3380"></A></TD>
<TD ALIGN="LEFT">CHSEIN<A NAME="3381"></A></TD>
<TD ALIGN="LEFT">DHSEIN<A NAME="3382"></A></TD>
<TD ALIGN="LEFT">ZHSEIN<A NAME="3383"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">inverse iteration</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">(quasi)triangular</TD>
<TD ALIGN="LEFT">eigenvectors</TD>
<TD ALIGN="LEFT">STREVC<A NAME="3384"></A></TD>
<TD ALIGN="LEFT">CTREVC<A NAME="3385"></A></TD>
<TD ALIGN="LEFT">DTREVC<A NAME="3386"></A></TD>
<TD ALIGN="LEFT">ZTREVC<A NAME="3387"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">reordering Schur</TD>
<TD ALIGN="LEFT">STREXC<A NAME="3388"></A></TD>
<TD ALIGN="LEFT">CTREXC<A NAME="3389"></A></TD>
<TD ALIGN="LEFT">DTREXC<A NAME="3390"></A></TD>
<TD ALIGN="LEFT">ZTREXC<A NAME="3391"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">factorization</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">Sylvester equation</TD>
<TD ALIGN="LEFT">STRSYL<A NAME="3392"></A></TD>
<TD ALIGN="LEFT">CTRSYL<A NAME="3393"></A></TD>
<TD ALIGN="LEFT">DTRSYL<A NAME="3394"></A></TD>
<TD ALIGN="LEFT">ZTRSYL<A NAME="3395"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">condition numbers of</TD>
<TD ALIGN="LEFT">STRSNA<A NAME="3396"></A></TD>
<TD ALIGN="LEFT">CTRSNA<A NAME="3397"></A></TD>
<TD ALIGN="LEFT">DTRSNA<A NAME="3398"></A></TD>
<TD ALIGN="LEFT">ZTRSNA<A NAME="3399"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalues/vectors</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">condition numbers of</TD>
<TD ALIGN="LEFT">STRSEN<A NAME="3400"></A></TD>
<TD ALIGN="LEFT">CTRSEN<A NAME="3401"></A></TD>
<TD ALIGN="LEFT">DTRSEN<A NAME="3402"></A></TD>
<TD ALIGN="LEFT">ZTRSEN<A NAME="3403"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalue cluster/</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">invariant subspace</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4877"
 HREF="node53.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4871"
 HREF="node49.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4867"
 HREF="node51.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4873"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4875"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4878"
 HREF="node53.html">Singular Value Decomposition</A>
<B> Up:</B> <A NAME="tex2html4872"
 HREF="node49.html">Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4868"
 HREF="node51.html">Balancing</A>
 &nbsp <B>  <A NAME="tex2html4874"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4876"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>