File: node53.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (471 lines) | stat: -rw-r--r-- 16,628 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node54.html">
<LINK REL="previous" HREF="node49.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node54.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4891"
 HREF="node54.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4885"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4879"
 HREF="node52.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4887"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4889"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4892"
 HREF="node54.html">Generalized Symmetric Definite Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4886"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4880"
 HREF="node52.html">Invariant Subspaces and Condition</A>
 &nbsp <B>  <A NAME="tex2html4888"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4890"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03246000000000000000"></A><A NAME="subseccompsvd"></A>
<BR>
Singular Value Decomposition
</H2>

<P>
Let <B><I>A</I></B> be a general real <B><I>m</I></B>-by-<B><I>n</I></B> matrix. The <B>singular value
decomposition (SVD)</B> of <B><I>A</I></B> is the factorization<A NAME="3410"></A>  
<!-- MATH
 $A=U \Sigma V^T$
 -->
<IMG
 WIDTH="92" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img157.png"
 ALT="$A=U \Sigma V^T$">,
where
<B><I>U</I></B> and <B><I>V</I></B> are orthogonal, and

<!-- MATH
 $\Sigma = {\mbox {\rm diag}}( \sigma_1 , \ldots , \sigma_r )$
 -->
<IMG
 WIDTH="159" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img158.png"
 ALT="$\Sigma = {\mbox {\rm diag}}( \sigma_1 , \ldots , \sigma_r )$">,

<!-- MATH
 $r = \min (m,n)$
 -->
<IMG
 WIDTH="112" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img159.png"
 ALT="$r = \min (m,n)$">,
with 
<!-- MATH
 $\sigma_1 \geq \cdots \geq \sigma_r \geq 0$
 -->
<IMG
 WIDTH="138" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img160.png"
 ALT="$\sigma_1 \geq \cdots \geq \sigma_r \geq 0$">.
If <B><I>A</I></B> is complex, then
its SVD is 
<!-- MATH
 $A=U \Sigma V^H$
 -->
<IMG
 WIDTH="94" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img161.png"
 ALT="$A=U \Sigma V^H$">
where <B><I>U</I></B> and <B><I>V</I></B> are unitary,
and <IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img35.png"
 ALT="$\Sigma$">
is as before with real
diagonal elements.
The <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">
are called the <B>singular values</B><A NAME="3412"></A>,
the first <B><I>r</I></B> columns of <B><I>V</I></B>
the <B>right singular vectors</B><A NAME="3414"></A> and
the first <B><I>r</I></B> columns of <B><I>U</I></B>
the <B>left singular vectors</B><A NAME="3416"></A>.

<P>
The routines described in this section, and listed in Table <A HREF="node53.html#tabcompsvd">2.12</A>,
are used to compute this decomposition.
The computation proceeds in the following stages:

<P>
<DL COMPACT>
<DT>1.
<DD>The matrix <B><I>A</I></B> is reduced to bidiagonal<A NAME="3419"></A>
form: <B><I>A</I>=<I>U</I><SUB>1</SUB> <I>B V</I><SUB>1</SUB><SUP><I>T</I></SUP></B> if
<B><I>A</I></B> is real (<B><I>A</I>=<I>U</I><SUB>1</SUB> <I>B V</I><SUB>1</SUB><SUP><I>H</I></SUP></B> if <B><I>A</I></B> is complex), where <B><I>U</I><SUB>1</SUB></B> and <B><I>V</I><SUB>1</SUB></B>
are orthogonal (unitary if <B><I>A</I></B> is complex), and <B><I>B</I></B> is real and
upper-bidiagonal when <IMG
 WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img105.png"
 ALT="$m \geq n$">
and lower bidiagonal when <B><I>m</I> &lt; <I>n</I></B>, so
that <B><I>B</I></B> is nonzero only on the main diagonal and either on the first
superdiagonal (if <IMG
 WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img105.png"
 ALT="$m \geq n$">)
or the first subdiagonal (if <B><I>m</I>&lt;<I>n</I></B>).
<P>
<DT>2.
<DD>The SVD of the bidiagonal matrix <B><I>B</I></B> is computed: 
<!-- MATH
 $B=U_2 \Sigma V_2^T$
 -->
<IMG
 WIDTH="98" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img162.png"
 ALT="$B=U_2 \Sigma V_2^T$">,
where <B><I>U</I><SUB>2</SUB></B> and <B><I>V</I><SUB>2</SUB></B> are orthogonal and <IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img35.png"
 ALT="$\Sigma$">
is diagonal as described
above. The singular vectors of <B><I>A</I></B> are then <B><I>U</I> = <I>U</I><SUB>1</SUB> <I>U</I><SUB>2</SUB></B> and
<B><I>V</I> = <I>V</I><SUB>1</SUB> <I>V</I><SUB>2</SUB></B>.
</DL>

<P>
The reduction to bidiagonal form is performed by the subroutine xGEBRD,
<A NAME="3421"></A>
<A NAME="3422"></A><A NAME="3423"></A><A NAME="3424"></A><A NAME="3425"></A>
 or by xGBBRD
<A NAME="3426"></A><A NAME="3427"></A><A NAME="3428"></A><A NAME="3429"></A>
for a band matrix.

<P>
The routine xGEBRD represents
<B><I>U</I><SUB>1</SUB></B> and <B><I>V</I><SUB>1</SUB></B> in factored form as products of elementary reflectors,
<A NAME="3430"></A>
<A NAME="3431"></A>
as described in section&nbsp;<A HREF="node128.html#secorthog">5.4</A>.
If <B><I>A</I></B> is real,
the matrices <B><I>U</I><SUB>1</SUB></B> and <B><I>V</I><SUB>1</SUB></B> may be computed explicitly using routine xORGBR,
<A NAME="3433"></A><A NAME="3434"></A>
or multiplied by other matrices without forming <B><I>U</I><SUB>1</SUB></B> and <B><I>V</I><SUB>1</SUB></B> using routine xORMBR<A NAME="3435"></A><A NAME="3436"></A>.
If <B><I>A</I></B> is complex, one instead uses xUNGBR<A NAME="3437"></A><A NAME="3438"></A>
and xUNMBR<A NAME="3439"></A><A NAME="3440"></A>, respectively.

<P>
If <B><I>A</I></B> is banded and xGBBRD is used to reduce it to bidiagonal form,
<B><I>U</I><SUB>1</SUB></B> and <B><I>V</I><SUB>1</SUB></B> are determined as products of Givens rotations
<A NAME="3441"></A>, rather than
as products of elementary reflectors. If <B><I>U</I><SUB>1</SUB></B> or <B><I>V</I><SUB>1</SUB></B> is required, it
must be formed explicitly by xGBBRD. xGBBRD uses a vectorizable
algorithm, similar to that used by xSBTRD (see Kaufman&nbsp;[<A
 HREF="node151.html#vbandr">77</A>]).
xGBBRD may be much faster than xGEBRD when the bandwidth is narrow.

<P>
The SVD of the bidiagonal matrix is computed either by subroutine
xBDSQR<A NAME="3443"></A><A NAME="3444"></A><A NAME="3445"></A><A NAME="3446"></A>
or by subroutine
xBDSDC<A NAME="3447"></A><A NAME="3448"></A>.
xBDSQR uses QR iteration when singular vectors are desired
[<A
 HREF="node151.html#demmelkahan">32</A>,<A
 HREF="node151.html#deiftdemmellitomei">23</A>],
and otherwise uses the dqds algorithm [<A
 HREF="node151.html#fernandoparlett">51</A>].
xBDSQR is more accurate than its counterparts in LINPACK and EISPACK:
barring underflow and overflow, it computes all the singular values of
<B><I>B</I></B> to nearly full relative precision, independent of their magnitudes.
It also computes the singular vectors much more accurately. See
section&nbsp;<A HREF="node96.html#secsvd">4.9</A> and
[<A
 HREF="node151.html#demmelkahan">32</A>,<A
 HREF="node151.html#deiftdemmellitomei">23</A>,<A
 HREF="node151.html#fernandoparlett">51</A>] for details.

<P>
xBDSDC uses a variation of Cuppen's divide and conquer algorithm to find
singular values and singular vectors [<A
 HREF="node151.html#jessupsorensen">69</A>,<A
 HREF="node151.html#gueisenstat3">58</A>].
It is much faster than xBDSQR if singular vectors of large matrices are desired.
When singular values only are desired, it uses the same dqds algorithm as xBDSQR
[<A
 HREF="node151.html#fernandoparlett">51</A>].
Divide-and-conquer is not guaranteed to compute singular values to nearly
full relative precision, but in practice xBDSDC is often at least as
accurate as xBDSQR.
xBDSDC represents the singular vector matrices <B><I>U</I><SUB>2</SUB></B> and <B><I>V</I><SUB>2</SUB></B>
in a compressed format requiring only <IMG
 WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img163.png"
 ALT="$O(n \log n)$">
space instead
of <B><I>n</I><SUP>2</SUP></B>. <B><I>U</I><SUB>2</SUB></B> and <B><I>V</I><SUB>2</SUB></B> may subsequently be generated explicitly
using routine xLASDQ, or multiplied by vectors without forming
them explicitly using routine xLASD0.

<P>
If <IMG
 WIDTH="57" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img164.png"
 ALT="$m \gg n$">,
it may be more efficient to first perform a <B><I>QR</I></B> factorization
of <B><I>A</I></B>, using the routine xGEQRF<A NAME="3455"></A><A NAME="3456"></A><A NAME="3457"></A>
<A NAME="3458"></A>,
and then to compute the SVD of the <B><I>n</I></B>-by-<B><I>n</I></B> matrix <B><I>R</I></B>, since
if <B><I>A</I> = <I>QR</I></B> and 
<!-- MATH
 $R = U \Sigma V^T$
 -->
<IMG
 WIDTH="92" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img165.png"
 ALT="$R = U \Sigma V^T$">,
then the SVD of <B><I>A</I></B> is given by

<!-- MATH
 $A = (QU) \Sigma V^T$
 -->
<IMG
 WIDTH="119" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img166.png"
 ALT="$A = (QU) \Sigma V^T$">.
Similarly, if <IMG
 WIDTH="57" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img167.png"
 ALT="$m \ll n$">,
it may be more efficient to first perform an
<B><I>LQ</I></B> factorization of <B><I>A</I></B>, using xGELQF. These preliminary <B><I>QR</I></B> and <B><I>LQ</I></B>
<A NAME="3459"></A><A NAME="3460"></A><A NAME="3461"></A><A NAME="3462"></A>
factorizations are performed by the drivers
xGESVD <A NAME="3463"></A><A NAME="3464"></A><A NAME="3465"></A><A NAME="3466"></A>
and
xGESDD.<A NAME="3467"></A><A NAME="3468"></A><A NAME="3469"></A><A NAME="3470"></A>

<P>
The SVD may be used to find a minimum norm solution<A NAME="3471"></A> to a (possibly)
rank-deficient linear least squares
<A NAME="3472"></A>
problem (<A HREF="node27.html#llsq">2.1</A>). The effective rank, <B><I>k</I></B>, of <B><I>A</I></B> can be determined as the
number of singular values which exceed a suitable threshold.
Let <IMG
 WIDTH="17" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img168.png"
 ALT="$\hat{\Sigma}$">
be the leading <B><I>k</I></B>-by-<B><I>k</I></B> submatrix of <IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img35.png"
 ALT="$\Sigma$">,
and
<IMG
 WIDTH="18" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img169.png"
 ALT="$\hat{V}$">
be the matrix consisting of the first <B><I>k</I></B> columns of <B><I>V</I></B>.
Then the solution is given by:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
x = \hat{V} \hat{\Sigma}^{-1} \hat{c}_1
\end{displaymath}
 -->


<IMG
 WIDTH="91" HEIGHT="29" BORDER="0"
 SRC="img170.png"
 ALT="\begin{displaymath}
x = \hat{V} \hat{\Sigma}^{-1} \hat{c}_1
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img117.png"
 ALT="$\hat{c}_1$">
consists of the first <B><I>k</I></B> elements of 
<!-- MATH
 $c = U^T b =
U_{2}^T U_{1}^T b$
 -->
<B><I>c</I> = <I>U</I><SUP><I>T</I></SUP> <I>b</I> =
<I>U</I><SUB>2</SUB><SUP><I>T</I></SUP> <I>U</I><SUB>1</SUB><SUP><I>T</I></SUP> <I>b</I></B>. <B><I>U</I><SUB>1</SUB><SUP><I>T</I></SUP> <I>b</I></B> can be computed using xORMBR, and
<A NAME="3484"></A><A NAME="3485"></A>
xBDSQR has an option to multiply a vector by <B><I>U</I><SUB>2</SUB><SUP><I>T</I></SUP></B>.
<A NAME="3487"></A><A NAME="3488"></A><A NAME="3489"></A><A NAME="3490"></A>

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabcompsvd"></A>
<DIV ALIGN="CENTER">
<A NAME="3492"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.12:</STRONG>
Computational routines for the singular value decomposition</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">general</TD>
<TD ALIGN="LEFT">bidiagonal reduction</TD>
<TD ALIGN="LEFT">SGEBRD<A NAME="3504"></A></TD>
<TD ALIGN="LEFT">CGEBRD<A NAME="3505"></A></TD>
<TD ALIGN="LEFT">DGEBRD<A NAME="3506"></A></TD>
<TD ALIGN="LEFT">ZGEBRD<A NAME="3507"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">general band</TD>
<TD ALIGN="LEFT">bidiagonal reduction</TD>
<TD ALIGN="LEFT">SGBBRD<A NAME="3508"></A></TD>
<TD ALIGN="LEFT">CGBBRD<A NAME="3509"></A></TD>
<TD ALIGN="LEFT">DGBBRD<A NAME="3510"></A></TD>
<TD ALIGN="LEFT">ZGBBRD<A NAME="3511"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">orthogonal/unitary</TD>
<TD ALIGN="LEFT">generate matrix after</TD>
<TD ALIGN="LEFT">SORGBR<A NAME="3512"></A></TD>
<TD ALIGN="LEFT">CUNGBR<A NAME="3513"></A></TD>
<TD ALIGN="LEFT">DORGBR<A NAME="3514"></A></TD>
<TD ALIGN="LEFT">ZUNGBR<A NAME="3515"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">bidiagonal reduction</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">multiply matrix after</TD>
<TD ALIGN="LEFT">SORMBR<A NAME="3516"></A></TD>
<TD ALIGN="LEFT">CUNMBR<A NAME="3517"></A></TD>
<TD ALIGN="LEFT">DORMBR<A NAME="3518"></A></TD>
<TD ALIGN="LEFT">ZUNMBR<A NAME="3519"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">bidiagonal reduction</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">bidiagonal</TD>
<TD ALIGN="LEFT">SVD using</TD>
<TD ALIGN="LEFT">SBDSQR<A NAME="3520"></A></TD>
<TD ALIGN="LEFT">CBDSQR<A NAME="3521"></A></TD>
<TD ALIGN="LEFT">DBDSQR<A NAME="3522"></A></TD>
<TD ALIGN="LEFT">ZBDSQR<A NAME="3523"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">QR or dqds</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">SVD using</TD>
<TD ALIGN="LEFT">SBDSDC<A NAME="3524"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">DBDSDC<A NAME="3525"></A></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">divide-and-conquer</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4891"
 HREF="node54.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4885"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4879"
 HREF="node52.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4887"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4889"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4892"
 HREF="node54.html">Generalized Symmetric Definite Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4886"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4880"
 HREF="node52.html">Invariant Subspaces and Condition</A>
 &nbsp <B>  <A NAME="tex2html4888"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4890"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>