File: node54.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (472 lines) | stat: -rw-r--r-- 15,239 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Symmetric Definite Eigenproblems</TITLE>
<META NAME="description" CONTENT="Generalized Symmetric Definite Eigenproblems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node55.html">
<LINK REL="previous" HREF="node53.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node55.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4905"
 HREF="node55.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4899"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4893"
 HREF="node53.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4901"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4903"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4906"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4900"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4894"
 HREF="node53.html">Singular Value Decomposition</A>
 &nbsp <B>  <A NAME="tex2html4902"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4904"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03247000000000000000"></A>
<A NAME="3530"></A>
<BR>
Generalized Symmetric Definite Eigenproblems
</H2>

<P>
This section is concerned with the solution of the generalized eigenvalue
problems <IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img39.png"
 ALT="$A z = \lambda B z$">,
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img40.png"
 ALT="$A B z = \lambda z$">,
and <IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img41.png"
 ALT="$B A z = \lambda z$">,
where
<B><I>A</I></B> and <B><I>B</I></B> are real symmetric or complex Hermitian and <B><I>B</I></B> is positive definite.
Each of these problems can be reduced to a standard symmetric
eigenvalue problem, using a Cholesky factorization of <B><I>B</I></B> as either
<B><I>B</I>=<I>LL</I><SUP><I>T</I></SUP></B> or <B><I>B</I>=<I>U</I><SUP><I>T</I></SUP><I>U</I></B> (<B><I>LL</I><SUP><I>H</I></SUP></B> or <B><I>U</I><SUP><I>H</I></SUP><I>U</I></B> in the Hermitian case).
In the case 
<!-- MATH
 $Ax = \lambda Bz$
 -->
<IMG
 WIDTH="84" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img171.png"
 ALT="$Ax = \lambda Bz$">,
if <B><I>A</I></B> and <B><I>B</I></B> are banded then this may also
be exploited to get a faster algorithm.

<P>
With <B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B>, we have
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
Az=\lambda Bz \quad \Rightarrow \quad (L ^{-1}AL ^{-T})(L^Tz)= \lambda(L^Tz).
\end{displaymath}
 -->


<IMG
 WIDTH="357" HEIGHT="31" BORDER="0"
 SRC="img172.png"
 ALT="\begin{displaymath}
Az=\lambda Bz \quad \Rightarrow \quad (L ^{-1}AL ^{-T})(L^Tz)= \lambda(L^Tz).
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Hence the eigenvalues of <IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img39.png"
 ALT="$A z = \lambda B z$">
are those of <IMG
 WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img173.png"
 ALT="$Cy=\lambda y$">,
where <B><I>C</I></B> is the symmetric matrix 
<!-- MATH
 $C = L^{-1} A L^{-T}$
 -->
<B><I>C</I> = <I>L</I><SUP>-1</SUP> <I>A L</I><SUP>-<I>T</I></SUP></B> and <B><I>y</I> = <I>L</I><SUP><I>T</I></SUP> <I>z</I></B>.
In the complex case <B><I>C</I></B> is Hermitian with 
<!-- MATH
 $C = L^{-1} A L^{-H}$
 -->
<B><I>C</I> = <I>L</I><SUP>-1</SUP> <I>A L</I><SUP>-<I>H</I></SUP></B> and <B><I>y</I> =
<I>L</I><SUP><I>H</I></SUP> <I>z</I></B>.

<P>
Table&nbsp;<A HREF="node54.html#tabgst">2.13</A> summarizes how each of the three types of problem
may be reduced to standard form <IMG
 WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img173.png"
 ALT="$Cy=\lambda y$">,
and how the eigenvectors <B><I>z</I></B>
of the original problem may be recovered from the eigenvectors <B><I>y</I></B> of the
reduced problem. The table applies to real problems; for complex problems,
transposed matrices must be replaced by conjugate-transposes.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabgst"></A>
<DIV ALIGN="CENTER">
<A NAME="3539"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.13:</STRONG>
Reduction of generalized symmetric definite eigenproblems to standard
problems</CAPTION>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">Type of</TD>
<TD ALIGN="CENTER" COLSPAN=1>Factorization</TD>
<TD ALIGN="CENTER" COLSPAN=1>Reduction</TD>
<TD ALIGN="CENTER" COLSPAN=1>Recovery of</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">problem</TD>
<TD ALIGN="CENTER" COLSPAN=1>of <B><I>B</I></B></TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER" COLSPAN=1>eigenvectors</TD>
</TR>
<TR><TD ALIGN="LEFT">1.</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $Az = \lambda Bz$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img39.png"
 ALT="$A z = \lambda B z$"></TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT">
<!-- MATH
 $C = L^{-1} A L^{-T}$
 -->
<B><I>C</I> = <I>L</I><SUP>-1</SUP> <I>A L</I><SUP>-<I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>L</I><SUP>-<I>T</I></SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>U</I><SUP><I>T</I></SUP><I>U</I></B></TD>
<TD ALIGN="LEFT">
<!-- MATH
 $C = U^{-T} A U^{-1}$
 -->
<B><I>C</I> = <I>U</I><SUP>-<I>T</I></SUP> <I>A U</I><SUP>-1</SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>U</I><SUP>-1</SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">2.</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $ABz = \lambda z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img40.png"
 ALT="$A B z = \lambda z$"></TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>L</I><SUP><I>T</I></SUP> <I>A L</I></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>L</I><SUP>-<I>T</I></SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>U</I><SUP><I>T</I></SUP><I>U</I></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>U A U</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>U</I><SUP>-1</SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">3.</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $BAz = \lambda z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img41.png"
 ALT="$B A z = \lambda z$"></TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>L</I><SUP><I>T</I></SUP> <I>A L</I></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>L y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>U</I><SUP><I>T</I></SUP><I>U</I></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>U A U</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>U</I><SUP><I>T</I></SUP> <I>y</I></B></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
Given <B><I>A</I></B> and a Cholesky factorization of <B><I>B</I></B>,
the routines xyyGST overwrite <B><I>A</I></B>
with the matrix <B><I>C</I></B> of the corresponding standard problem

<!-- MATH
 $Cy = \lambda y$
 -->
<IMG
 WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img173.png"
 ALT="$Cy=\lambda y$">
(see Table <A HREF="node54.html#tabcompgeig">2.14</A>).
This may then be solved using the routines described in
subsection&nbsp;<A HREF="node48.html#subseccompsep">2.4.4</A>.
No special routines are needed
to recover the eigenvectors <B><I>z</I></B> of the generalized problem from
the eigenvectors <B><I>y</I></B> of the standard problem, because these
computations are simple applications of Level 2 or Level 3 BLAS.

<P>
If the problem is 
<!-- MATH
 $A z = \lambda B z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img39.png"
 ALT="$A z = \lambda B z$">
and the matrices <B><I>A</I></B> and <B><I>B</I></B> are banded,
the matrix <B><I>C</I></B> as defined above is, in general, full.
We can reduce the problem to a banded standard problem by modifying the
definition of <B><I>C</I></B> thus:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
C = X^T A X, \quad \mbox{ where } X = U^{-1} Q \quad \mbox{ or } \quad L^{-T} Q,
\end{displaymath}
 -->


<IMG
 WIDTH="369" HEIGHT="30" BORDER="0"
 SRC="img174.png"
 ALT="\begin{displaymath}
C = X^T A X, \quad \mbox{ where } X = U^{-1} Q \quad \mbox{ or } \quad L^{-T} Q,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>Q</I></B> is an orthogonal matrix chosen to ensure that <B><I>C</I></B> has bandwidth
no greater than that of <B><I>A</I></B>.
<B><I>Q</I></B> is determined as a product of Givens rotations.
<A NAME="3576"></A>
This is known as Crawford's algorithm<A NAME="3577"></A>
<A NAME="3578"></A>
(see Crawford&nbsp;[<A
 HREF="node151.html#crawford">19</A>]).
If <B><I>X</I></B> is required, it must be formed explicitly by the reduction routine.

<P>
A further refinement is possible when <B><I>A</I></B> and <B><I>B</I></B> are banded, which halves
the amount of work required to form <B><I>C</I></B> (see Wilkinson&nbsp;[<A
 HREF="node151.html#wilkinsona">104</A>]).
Instead of the standard Cholesky factorization of <B><I>B</I></B> as <B><I>U</I><SUP><I>T</I></SUP> <I>U</I></B> or <B><I>L L</I><SUP><I>T</I></SUP></B>,
we use a ``split Cholesky'' factorization <B><I>B</I> = <I>S</I><SUP><I>T</I></SUP> <I>S</I></B>
<A NAME="3581"></A>
<A NAME="3582"></A>
(<B><I>S</I><SUP><I>H</I></SUP> <I>S</I></B> if <B><I>B</I></B> is complex), where:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
S = \left( \begin{array}{cc}
U_{11} &   \\
M_{21} & L_{22} \\
\end{array} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="144" HEIGHT="54" BORDER="0"
 SRC="img175.png"
 ALT="\begin{displaymath}
S = \left( \begin{array}{cc}
U_{11} &amp; \\
M_{21} &amp; L_{22} \\
\end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
with <B><I>U</I><SUB>11</SUB></B> upper triangular and <B><I>L</I><SUB>22</SUB></B> lower triangular of
order approximately <B><I>n</I>/2</B>;
<B><I>S</I></B> has the same bandwidth as <B><I>B</I></B>. After <B><I>B</I></B> has been factorized in this way
by the routine
xPBSTF<A NAME="3591"></A><A NAME="3592"></A><A NAME="3593"></A><A NAME="3594"></A>,
the reduction of the banded generalized
problem 
<!-- MATH
 $A z = \lambda B z$
 -->
<IMG
 WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img39.png"
 ALT="$A z = \lambda B z$">
to a banded standard problem 
<!-- MATH
 $C y = \lambda y$
 -->
<IMG
 WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img173.png"
 ALT="$Cy=\lambda y$">
is performed by the routine xSBGST<A NAME="3595"></A><A NAME="3596"></A>
(or xHBGST<A NAME="3597"></A><A NAME="3598"></A> for complex matrices).
This routine implements a vectorizable form of the algorithm, suggested by
Kaufman&nbsp;[<A
 HREF="node151.html#vbandr">77</A>].

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabcompgeig"></A>
<DIV ALIGN="CENTER">
<A NAME="3601"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.14:</STRONG>
Computational routines for the generalized symmetric definite eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric/Hermitian</TD>
<TD ALIGN="LEFT">reduction</TD>
<TD ALIGN="LEFT">SSYGST<A NAME="3613"></A></TD>
<TD ALIGN="LEFT">CHEGST<A NAME="3614"></A></TD>
<TD ALIGN="LEFT">DSYGST<A NAME="3615"></A></TD>
<TD ALIGN="LEFT">ZHEGST<A NAME="3616"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric/Hermitian</TD>
<TD ALIGN="LEFT">reduction</TD>
<TD ALIGN="LEFT">SSPGST<A NAME="3617"></A></TD>
<TD ALIGN="LEFT">CHPGST<A NAME="3618"></A></TD>
<TD ALIGN="LEFT">DSPGST<A NAME="3619"></A></TD>
<TD ALIGN="LEFT">ZHPGST<A NAME="3620"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(packed storage)</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric/Hermitian</TD>
<TD ALIGN="LEFT">split Cholesky</TD>
<TD ALIGN="LEFT">SPBSTF<A NAME="3621"></A></TD>
<TD ALIGN="LEFT">CPBSTF<A NAME="3622"></A></TD>
<TD ALIGN="LEFT">DPBSTF<A NAME="3623"></A></TD>
<TD ALIGN="LEFT">ZPBSTF<A NAME="3624"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">banded</TD>
<TD ALIGN="LEFT">factorization</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">reduction</TD>
<TD ALIGN="LEFT">SSBGST<A NAME="3625"></A></TD>
<TD ALIGN="LEFT">DSBGST<A NAME="3626"></A></TD>
<TD ALIGN="LEFT">CHBGST<A NAME="3627"></A></TD>
<TD ALIGN="LEFT">ZHBGST<A NAME="3628"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4905"
 HREF="node55.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4899"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4893"
 HREF="node53.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4901"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4903"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4906"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4900"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4894"
 HREF="node53.html">Singular Value Decomposition</A>
 &nbsp <B>  <A NAME="tex2html4902"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4904"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>