1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized Symmetric Definite Eigenproblems</TITLE>
<META NAME="description" CONTENT="Generalized Symmetric Definite Eigenproblems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node55.html">
<LINK REL="previous" HREF="node53.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node55.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4905"
HREF="node55.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4899"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4893"
HREF="node53.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4901"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4903"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4906"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4900"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4894"
HREF="node53.html">Singular Value Decomposition</A>
  <B> <A NAME="tex2html4902"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4904"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03247000000000000000"></A>
<A NAME="3530"></A>
<BR>
Generalized Symmetric Definite Eigenproblems
</H2>
<P>
This section is concerned with the solution of the generalized eigenvalue
problems <IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img39.png"
ALT="$A z = \lambda B z$">,
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png"
ALT="$A B z = \lambda z$">,
and <IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$B A z = \lambda z$">,
where
<B><I>A</I></B> and <B><I>B</I></B> are real symmetric or complex Hermitian and <B><I>B</I></B> is positive definite.
Each of these problems can be reduced to a standard symmetric
eigenvalue problem, using a Cholesky factorization of <B><I>B</I></B> as either
<B><I>B</I>=<I>LL</I><SUP><I>T</I></SUP></B> or <B><I>B</I>=<I>U</I><SUP><I>T</I></SUP><I>U</I></B> (<B><I>LL</I><SUP><I>H</I></SUP></B> or <B><I>U</I><SUP><I>H</I></SUP><I>U</I></B> in the Hermitian case).
In the case
<!-- MATH
$Ax = \lambda Bz$
-->
<IMG
WIDTH="84" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img171.png"
ALT="$Ax = \lambda Bz$">,
if <B><I>A</I></B> and <B><I>B</I></B> are banded then this may also
be exploited to get a faster algorithm.
<P>
With <B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B>, we have
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
Az=\lambda Bz \quad \Rightarrow \quad (L ^{-1}AL ^{-T})(L^Tz)= \lambda(L^Tz).
\end{displaymath}
-->
<IMG
WIDTH="357" HEIGHT="31" BORDER="0"
SRC="img172.png"
ALT="\begin{displaymath}
Az=\lambda Bz \quad \Rightarrow \quad (L ^{-1}AL ^{-T})(L^Tz)= \lambda(L^Tz).
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Hence the eigenvalues of <IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img39.png"
ALT="$A z = \lambda B z$">
are those of <IMG
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img173.png"
ALT="$Cy=\lambda y$">,
where <B><I>C</I></B> is the symmetric matrix
<!-- MATH
$C = L^{-1} A L^{-T}$
-->
<B><I>C</I> = <I>L</I><SUP>-1</SUP> <I>A L</I><SUP>-<I>T</I></SUP></B> and <B><I>y</I> = <I>L</I><SUP><I>T</I></SUP> <I>z</I></B>.
In the complex case <B><I>C</I></B> is Hermitian with
<!-- MATH
$C = L^{-1} A L^{-H}$
-->
<B><I>C</I> = <I>L</I><SUP>-1</SUP> <I>A L</I><SUP>-<I>H</I></SUP></B> and <B><I>y</I> =
<I>L</I><SUP><I>H</I></SUP> <I>z</I></B>.
<P>
Table <A HREF="node54.html#tabgst">2.13</A> summarizes how each of the three types of problem
may be reduced to standard form <IMG
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img173.png"
ALT="$Cy=\lambda y$">,
and how the eigenvectors <B><I>z</I></B>
of the original problem may be recovered from the eigenvectors <B><I>y</I></B> of the
reduced problem. The table applies to real problems; for complex problems,
transposed matrices must be replaced by conjugate-transposes.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabgst"></A>
<DIV ALIGN="CENTER">
<A NAME="3539"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.13:</STRONG>
Reduction of generalized symmetric definite eigenproblems to standard
problems</CAPTION>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">Type of</TD>
<TD ALIGN="CENTER" COLSPAN=1>Factorization</TD>
<TD ALIGN="CENTER" COLSPAN=1>Reduction</TD>
<TD ALIGN="CENTER" COLSPAN=1>Recovery of</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">problem</TD>
<TD ALIGN="CENTER" COLSPAN=1>of <B><I>B</I></B></TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER" COLSPAN=1>eigenvectors</TD>
</TR>
<TR><TD ALIGN="LEFT">1.</TD>
<TD ALIGN="CENTER">
<!-- MATH
$Az = \lambda Bz$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img39.png"
ALT="$A z = \lambda B z$"></TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT">
<!-- MATH
$C = L^{-1} A L^{-T}$
-->
<B><I>C</I> = <I>L</I><SUP>-1</SUP> <I>A L</I><SUP>-<I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>L</I><SUP>-<I>T</I></SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>U</I><SUP><I>T</I></SUP><I>U</I></B></TD>
<TD ALIGN="LEFT">
<!-- MATH
$C = U^{-T} A U^{-1}$
-->
<B><I>C</I> = <I>U</I><SUP>-<I>T</I></SUP> <I>A U</I><SUP>-1</SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>U</I><SUP>-1</SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">2.</TD>
<TD ALIGN="CENTER">
<!-- MATH
$ABz = \lambda z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png"
ALT="$A B z = \lambda z$"></TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>L</I><SUP><I>T</I></SUP> <I>A L</I></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>L</I><SUP>-<I>T</I></SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>U</I><SUP><I>T</I></SUP><I>U</I></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>U A U</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>U</I><SUP>-1</SUP> <I>y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">3.</TD>
<TD ALIGN="CENTER">
<!-- MATH
$BAz = \lambda z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$B A z = \lambda z$"></TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>LL</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>L</I><SUP><I>T</I></SUP> <I>A L</I></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>L y</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT"><B><I>B</I> = <I>U</I><SUP><I>T</I></SUP><I>U</I></B></TD>
<TD ALIGN="LEFT"><B><I>C</I> = <I>U A U</I><SUP><I>T</I></SUP></B></TD>
<TD ALIGN="LEFT"><B><I>z</I> = <I>U</I><SUP><I>T</I></SUP> <I>y</I></B></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
Given <B><I>A</I></B> and a Cholesky factorization of <B><I>B</I></B>,
the routines xyyGST overwrite <B><I>A</I></B>
with the matrix <B><I>C</I></B> of the corresponding standard problem
<!-- MATH
$Cy = \lambda y$
-->
<IMG
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img173.png"
ALT="$Cy=\lambda y$">
(see Table <A HREF="node54.html#tabcompgeig">2.14</A>).
This may then be solved using the routines described in
subsection <A HREF="node48.html#subseccompsep">2.4.4</A>.
No special routines are needed
to recover the eigenvectors <B><I>z</I></B> of the generalized problem from
the eigenvectors <B><I>y</I></B> of the standard problem, because these
computations are simple applications of Level 2 or Level 3 BLAS.
<P>
If the problem is
<!-- MATH
$A z = \lambda B z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img39.png"
ALT="$A z = \lambda B z$">
and the matrices <B><I>A</I></B> and <B><I>B</I></B> are banded,
the matrix <B><I>C</I></B> as defined above is, in general, full.
We can reduce the problem to a banded standard problem by modifying the
definition of <B><I>C</I></B> thus:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
C = X^T A X, \quad \mbox{ where } X = U^{-1} Q \quad \mbox{ or } \quad L^{-T} Q,
\end{displaymath}
-->
<IMG
WIDTH="369" HEIGHT="30" BORDER="0"
SRC="img174.png"
ALT="\begin{displaymath}
C = X^T A X, \quad \mbox{ where } X = U^{-1} Q \quad \mbox{ or } \quad L^{-T} Q,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>Q</I></B> is an orthogonal matrix chosen to ensure that <B><I>C</I></B> has bandwidth
no greater than that of <B><I>A</I></B>.
<B><I>Q</I></B> is determined as a product of Givens rotations.
<A NAME="3576"></A>
This is known as Crawford's algorithm<A NAME="3577"></A>
<A NAME="3578"></A>
(see Crawford [<A
HREF="node151.html#crawford">19</A>]).
If <B><I>X</I></B> is required, it must be formed explicitly by the reduction routine.
<P>
A further refinement is possible when <B><I>A</I></B> and <B><I>B</I></B> are banded, which halves
the amount of work required to form <B><I>C</I></B> (see Wilkinson [<A
HREF="node151.html#wilkinsona">104</A>]).
Instead of the standard Cholesky factorization of <B><I>B</I></B> as <B><I>U</I><SUP><I>T</I></SUP> <I>U</I></B> or <B><I>L L</I><SUP><I>T</I></SUP></B>,
we use a ``split Cholesky'' factorization <B><I>B</I> = <I>S</I><SUP><I>T</I></SUP> <I>S</I></B>
<A NAME="3581"></A>
<A NAME="3582"></A>
(<B><I>S</I><SUP><I>H</I></SUP> <I>S</I></B> if <B><I>B</I></B> is complex), where:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
S = \left( \begin{array}{cc}
U_{11} & \\
M_{21} & L_{22} \\
\end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="144" HEIGHT="54" BORDER="0"
SRC="img175.png"
ALT="\begin{displaymath}
S = \left( \begin{array}{cc}
U_{11} & \\
M_{21} & L_{22} \\
\end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
with <B><I>U</I><SUB>11</SUB></B> upper triangular and <B><I>L</I><SUB>22</SUB></B> lower triangular of
order approximately <B><I>n</I>/2</B>;
<B><I>S</I></B> has the same bandwidth as <B><I>B</I></B>. After <B><I>B</I></B> has been factorized in this way
by the routine
xPBSTF<A NAME="3591"></A><A NAME="3592"></A><A NAME="3593"></A><A NAME="3594"></A>,
the reduction of the banded generalized
problem
<!-- MATH
$A z = \lambda B z$
-->
<IMG
WIDTH="83" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img39.png"
ALT="$A z = \lambda B z$">
to a banded standard problem
<!-- MATH
$C y = \lambda y$
-->
<IMG
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img173.png"
ALT="$Cy=\lambda y$">
is performed by the routine xSBGST<A NAME="3595"></A><A NAME="3596"></A>
(or xHBGST<A NAME="3597"></A><A NAME="3598"></A> for complex matrices).
This routine implements a vectorizable form of the algorithm, suggested by
Kaufman [<A
HREF="node151.html#vbandr">77</A>].
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabcompgeig"></A>
<DIV ALIGN="CENTER">
<A NAME="3601"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.14:</STRONG>
Computational routines for the generalized symmetric definite eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric/Hermitian</TD>
<TD ALIGN="LEFT">reduction</TD>
<TD ALIGN="LEFT">SSYGST<A NAME="3613"></A></TD>
<TD ALIGN="LEFT">CHEGST<A NAME="3614"></A></TD>
<TD ALIGN="LEFT">DSYGST<A NAME="3615"></A></TD>
<TD ALIGN="LEFT">ZHEGST<A NAME="3616"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric/Hermitian</TD>
<TD ALIGN="LEFT">reduction</TD>
<TD ALIGN="LEFT">SSPGST<A NAME="3617"></A></TD>
<TD ALIGN="LEFT">CHPGST<A NAME="3618"></A></TD>
<TD ALIGN="LEFT">DSPGST<A NAME="3619"></A></TD>
<TD ALIGN="LEFT">ZHPGST<A NAME="3620"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(packed storage)</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT">symmetric/Hermitian</TD>
<TD ALIGN="LEFT">split Cholesky</TD>
<TD ALIGN="LEFT">SPBSTF<A NAME="3621"></A></TD>
<TD ALIGN="LEFT">CPBSTF<A NAME="3622"></A></TD>
<TD ALIGN="LEFT">DPBSTF<A NAME="3623"></A></TD>
<TD ALIGN="LEFT">ZPBSTF<A NAME="3624"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">banded</TD>
<TD ALIGN="LEFT">factorization</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">reduction</TD>
<TD ALIGN="LEFT">SSBGST<A NAME="3625"></A></TD>
<TD ALIGN="LEFT">DSBGST<A NAME="3626"></A></TD>
<TD ALIGN="LEFT">CHBGST<A NAME="3627"></A></TD>
<TD ALIGN="LEFT">ZHBGST<A NAME="3628"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4905"
HREF="node55.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4899"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4893"
HREF="node53.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4901"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4903"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4906"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Up:</B> <A NAME="tex2html4900"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4894"
HREF="node53.html">Singular Value Decomposition</A>
  <B> <A NAME="tex2html4902"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4904"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|