1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Eigenvalues, Eigenvectors and Generalized Schur Decomposition</TITLE>
<META NAME="description" CONTENT="Eigenvalues, Eigenvectors and Generalized Schur Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node57.html">
<LINK REL="previous" HREF="node55.html">
<LINK REL="up" HREF="node55.html">
<LINK REL="next" HREF="node57.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4936"
HREF="node57.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4930"
HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4924"
HREF="node55.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4932"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4934"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4937"
HREF="node57.html">Balancing</A>
<B> Up:</B> <A NAME="tex2html4931"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4925"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
  <B> <A NAME="tex2html4933"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4935"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03248100000000000000">
Eigenvalues, Eigenvectors and Generalized Schur Decomposition</A>
</H3>
<P>
Let <B><I>A</I></B> and <B><I>B</I></B> be <B><I>n</I></B>-by-<B><I>n</I></B> matrices.
<A NAME="3635"></A>
A scalar <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
is called
a <B>generalized eigenvalue</B> <A NAME="3637"></A>
and a non-zero column vector <B><I>x</I></B> the
corresponding <B>right generalized eigenvector</B>
<A NAME="3639"></A> of the pair <B>(<I>A</I>,<I>B</I>)</B>,
if
<!-- MATH
$Ax = \lambda Bx$
-->
<IMG
WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img176.png"
ALT="$Ax = \lambda Bx$">.
A non-zero column vector <B><I>y</I></B> satisfying
<!-- MATH
$y^H A = \lambda y^H B$
-->
<IMG
WIDTH="109" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img177.png"
ALT="$y^H A = \lambda y^H B$">
is called the
<B>left generalized eigenvector</B> <A NAME="3641"></A>
corresponding to <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">.
(For
simplicity, we will usually omit the word ``generalized'' when no
confusion is likely to arise.) If <B><I>B</I></B> is singular, we can have the
<B>infinite eigenvalue</B> <A NAME="3643"></A>
<!-- MATH
$\lambda = \infty$
-->
<IMG
WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img178.png"
ALT="$\lambda = \infty$">,
by which we mean
<B><I>Bx</I> = 0</B>. Note that if <B><I>A</I></B> is non-singular, then the equivalent
problem <IMG
WIDTH="85" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img179.png"
ALT="$\mu Ax = Bx$">
is perfectly well-defined, and the infinite
eigenvalue corresponds to <IMG
WIDTH="47" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img180.png"
ALT="$\mu = 0$">.
The generalized symmetric definite eigenproblem in section 2.3.7
has only finite real eigenvalues. The generalized nonsymmetric
eigenvalue problem can have real, complex or infinite eigenvalues.
To deal with both finite (including zero) and infinite
eigenvalues, the LAPACK routines return two values, <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">.
If <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
is non-zero then
<!-- MATH
$\lambda = \alpha/\beta$
-->
<IMG
WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img51.png"
ALT="$\lambda = \alpha/\beta$">
is an eigenvalue.
If <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
is zero then
<!-- MATH
$\lambda = \infty$
-->
<IMG
WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img178.png"
ALT="$\lambda = \infty$">
is an eigenvalue of <B>(<I>A</I>, <I>B</I>)</B>.
(Round off may change an exactly zero <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
to a small nonzero value,
changing the eigenvalue
<!-- MATH
$\lambda = \infty$
-->
<IMG
WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img178.png"
ALT="$\lambda = \infty$">
to some very large value;
see section <A HREF="node100.html#sec_GNEPErrorBounds">4.11</A> for details.)
A basic task of these
routines is to compute all <B><I>n</I></B> pairs
<!-- MATH
$(\alpha,\beta)$
-->
<IMG
WIDTH="48" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img181.png"
ALT="$(\alpha,\beta)$">
and <B><I>x</I></B> and/or
<B><I>y</I></B> for a given pair of matrices <B>(<I>A</I>,<I>B</I>)</B>.
<P>
If the determinant of <IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$A - \lambda B$">
is identically
zero for all values of <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">,
the eigenvalue problem is called <B>singular</B>; otherwise it is <B>regular</B>.
Singularity of <B>(<I>A</I>,<I>B</I>)</B> is signaled by some
<!-- MATH
$\alpha = \beta = 0$
-->
<IMG
WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img57.png"
ALT="$\alpha = \beta = 0$">
(in the presence of roundoff, <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
may be very small). In this case, the eigenvalue problem is very
ill-conditioned, and in fact some of the other nonzero values of <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
may be indeterminate (see section <A HREF="node105.html#sec_singular">4.11.1.4</A> for further
discussion)
[<A
HREF="node151.html#stewart72">93</A>,<A
HREF="node151.html#wilkinson79">105</A>,<A
HREF="node151.html#demmelkagstrom87">29</A>,<A
HREF="node151.html#gantmacher">53</A>].
<P>
Another basic task is to compute the <B>generalized Schur decomposition</B>
<A NAME="3650"></A>
of the pair <B>(<I>A</I>,<I>B</I>)</B>. If <B><I>A</I></B> and <B><I>B</I></B> are complex, then their generalized
Schur decomposition is <B><I>A</I> = <I>QSZ</I><SUP><I>H</I></SUP></B> and <B><I>B</I> = <I>QTZ</I><SUP><I>H</I></SUP></B>, where <B><I>Q</I></B> and <B><I>Z</I></B> are
unitary and <B><I>S</I></B> and <B><I>T</I></B> are upper triangular. The LAPACK routines
normalize <B><I>T</I></B> to have real non-negative diagonal entries. <A NAME="3651"></A>
Note that in this
form, the eigenvalues can be easily computed from the diagonals:
<!-- MATH
$\lambda_i = s_{ii}/t_{ii}$
-->
<IMG
WIDTH="86" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img182.png"
ALT="$\lambda_i = s_{ii}/t_{ii}$">
(if <IMG
WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img183.png"
ALT="$t_{ii} \neq 0$">)
and
<!-- MATH
$\lambda_i = \infty$
-->
<IMG
WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img184.png"
ALT="$\lambda_i = \infty$">
(if <B><I>t</I><SUB><I>ii</I></SUB> = 0</B>), and so the LAPACK
routines return
<!-- MATH
$\alpha_i = s_{ii}$
-->
<IMG
WIDTH="62" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img185.png"
ALT="$\alpha_i = s_{ii}$">
and
<!-- MATH
$\beta_i = t_{ii}$
-->
<IMG
WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img186.png"
ALT="$\beta_i = t_{ii}$">.
<P>
The generalized Schur form depends on the order of the eigenvalues on the
diagonal of <B>(<I>S</I>,<I>T</I>)</B>. This order may optionally be chosen by the user.
<P>
If <B><I>A</I></B> and <B><I>B</I></B> are real, then their generalized Schur decomposition
is <B><I>A</I> = <I>QSZ</I><SUP><I>T</I></SUP></B> and <B><I>B</I> = <I>QTZ</I><SUP><I>T</I></SUP></B>, where <B><I>Q</I></B> and <B><I>Z</I></B> are orthogonal,
<B><I>S</I></B> is quasi-upper triangular with 1-by-1 and 2-by-2 blocks on the
diagonal, and <B><I>T</I></B> is upper triangular with non-negative diagonal entries.
The structure of a typical pair of <B>(<I>S</I>,<I>T</I>)</B> is illustrated below for <B><I>n</I>=6</B>:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
S = \left( \begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array} \right), \quad\quad\quad
T = \left( \begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
0 & \times & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & 0 & \times
\end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="538" HEIGHT="137" BORDER="0"
SRC="img187.png"
ALT="\begin{displaymath}
S = \left( \begin{array}{cccccc}
\times & \times & \times &...
...\times & 0 \\
0 & 0 & 0 & 0 & 0 & \times
\end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The <B>1 x 1</B> diagonal blocks of <B>(<I>S</I>,<I>T</I>)</B>
(those in the (1,1) and (4,4) positions)
contain the real eigenvalues of <B>(<I>A</I>,<I>B</I>)</B> and
the <B>2 x 2</B> diagonal blocks of <B>(<I>S</I>,<I>T</I>)</B>
(those in the (2:3,2:3) and (5:6,5:6) positions)
contain conjugate pairs of complex eigenvalues of <B>(<I>A</I>,<I>B</I>)</B>.
The <B>2 x 2</B> diagonal blocks of <B><I>T</I></B> corresponding to 2-by-2
blocks of <B><I>S</I></B> are made diagonal.
This arrangement enables us to work entirely with real numbers, even when
some of the eigenvalues of <B>(<I>A</I>,<I>B</I>)</B> are complex.
Note that for real eigenvalues, as for all eigenvalues in the complex case,
the <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$\alpha_i$">
and <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
values corresponding to real eigenvalues may be
easily computed from the diagonals of <B><I>S</I></B> and <B><I>T</I></B>. The <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$\alpha_i$">
and
<IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
values corresponding to complex eigenvalues
of a 2-by-2 diagonal block of <B>(<I>S</I>,<I>T</I>)</B>
are computed by first
computing the complex conjugate eigenvalues <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
and <IMG
WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img188.png"
ALT="$\bar{\lambda}$">
of the block,
then computing the values of <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
and <IMG
WIDTH="37" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img189.png"
ALT="$\beta_{i+1}$">
that would
result if the block were put into <EM>complex</EM> generalized
Schur form, and finally multiplying to get
<!-- MATH
$\alpha_i = \lambda \beta_i$
-->
<IMG
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img190.png"
ALT="$\alpha_i = \lambda \beta_i$">
and
<!-- MATH
$\alpha_{i+1}=\bar{\lambda}\beta_{i+1}$
-->
<IMG
WIDTH="104" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img191.png"
ALT="$\alpha_{i+1}=\bar{\lambda}\beta_{i+1}$">.
<BR>
<P>
The columns of <B><I>Q</I></B> and <B><I>Z</I></B> are called <B>generalized Schur vectors</B>
<A NAME="3671"></A>
and span pairs of <B>deflating subspaces</B> of <B><I>A</I></B> and <B><I>B</I></B> [<A
HREF="node151.html#stewart73">94</A>].
<A NAME="3674"></A><A NAME="3675"></A>
Deflating subspaces are a generalization of invariant subspaces: the first <B><I>k</I></B>
columns of <B><I>Z</I></B> span a right deflating subspace mapped by both <B><I>A</I></B> and
<B><I>B</I></B> into a left deflating subspace spanned by the first <B><I>k</I></B> columns of
<B><I>Q</I></B>. This pair of deflating subspaces corresponds to the first <B><I>k</I></B>
eigenvalues appearing at the top left corner of <B><I>S</I></B> and <B><I>T</I></B> as explained
in section <A HREF="node35.html#sec_gnep_driver">2.3.5.2</A>.
<BR>
<P>
The computations proceed in the following stages:
<DL COMPACT>
<DT>1.
<DD>The pair <B>(<I>A</I>,<I>B</I>)</B> is reduced to <B>generalized upper Hessenberg form</B>.
<A NAME="3679"></A>
If <B><I>A</I></B> and <B><I>B</I></B> are real, this decomposition is <B><I>A</I> = <I>UHV</I><SUP><I>T</I></SUP></B>
and <B><I>B</I> = <I>U R V</I><SUP><I>T</I></SUP></B> where <B><I>H</I></B> is upper Hessenberg (zero below the
first subdiagonal), <B><I>R</I></B> is upper triangular, and <B><I>U</I></B> and <B><I>V</I></B>
are orthogonal. If <B><I>A</I></B> and <B><I>B</I></B> are complex, the decomposition is
<B><I>A</I> = <I>UHV</I><SUP><I>H</I></SUP></B> and <B><I>B</I> = <I>URV</I><SUP><I>H</I></SUP></B> with <B><I>U</I></B> and <B><I>V</I></B> unitary, and <B><I>H</I></B>
and <B><I>R</I></B> as before. This decomposition is performed by the
subroutine xGGHRD,
<A NAME="3680"></A><A NAME="3681"></A><A NAME="3682"></A><A NAME="3683"></A>
which computes <B><I>H</I></B> and <B><I>R</I></B>, and optionally
<B><I>U</I></B> and/or <B><I>V</I></B>. Note that in contrast to xGEHRD (for the standard
nonsymmetric eigenvalue problem), xGGHRD does not compute <B><I>U</I></B> and
<B><I>V</I></B> in a factored form.
<P>
<DT>2.
<DD>The pair <B>(<I>H</I>,<I>R</I>)</B> is reduced to generalized Schur form
<A NAME="3684"></A>
<B><I>H</I> = <I>QSZ</I><SUP><I>T</I></SUP></B> and <B><I>R</I> = <I>QTZ</I><SUP><I>T</I></SUP></B> (for <B><I>H</I></B> and <B><I>R</I></B> real) or
<B><I>H</I> = <I>QSZ</I><SUP><I>H</I></SUP></B> and <B><I>R</I> = <I>QTZ</I><SUP><I>H</I></SUP></B> (for <B><I>H</I></B> and <B><I>R</I></B> complex)
by subroutine xHGEQZ.
<A NAME="3685"></A>
<A NAME="3686"></A><A NAME="3687"></A><A NAME="3688"></A><A NAME="3689"></A>
The values <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$\alpha_i$">
and <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
are also
computed, where
<!-- MATH
$\lambda_i = \alpha_i / \beta_i$
-->
<IMG
WIDTH="84" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img192.png"
ALT="$\lambda_i = \alpha_i / \beta_i$">
are the
eigenvalues. The matrices <B><I>Z</I></B> and <B><I>Q</I></B> are optionally computed.
<P>
<DT>3.
<DD>The left and/or right eigenvectors of the pair <B>(<I>S</I>,<I>T</I>)</B> are
computed by xTGEVC.
<A NAME="3690"></A><A NAME="3691"></A>
One may optionally transform the right
eigenvectors of <B>(<I>S</I>,<I>T</I>)</B> to the right eigenvectors of <B>(<I>A</I>,<I>B</I>)</B>
(or of <B>(<I>H</I>,<I>R</I>)</B>) by passing <B>(<I>UQ</I>,<I>VZ</I>)</B> (or <B>(<I>Q</I>,<I>Z</I>)</B>) to xTGEVC.
<A NAME="3692"></A><A NAME="3693"></A><A NAME="3694"></A><A NAME="3695"></A>
<P>
</DL>
<P>
Other subsidiary tasks may be performed before or after
those described.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4936"
HREF="node57.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4930"
HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4924"
HREF="node55.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4932"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4934"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4937"
HREF="node57.html">Balancing</A>
<B> Up:</B> <A NAME="tex2html4931"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4925"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
  <B> <A NAME="tex2html4933"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4935"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|