File: node56.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (515 lines) | stat: -rw-r--r-- 17,545 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Eigenvalues, Eigenvectors and Generalized Schur Decomposition</TITLE>
<META NAME="description" CONTENT="Eigenvalues, Eigenvectors and Generalized Schur Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node57.html">
<LINK REL="previous" HREF="node55.html">
<LINK REL="up" HREF="node55.html">
<LINK REL="next" HREF="node57.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4936"
 HREF="node57.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4930"
 HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4924"
 HREF="node55.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4932"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4934"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4937"
 HREF="node57.html">Balancing</A>
<B> Up:</B> <A NAME="tex2html4931"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4925"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
 &nbsp <B>  <A NAME="tex2html4933"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4935"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03248100000000000000">
Eigenvalues, Eigenvectors and Generalized Schur Decomposition</A>
</H3>

<P>
Let <B><I>A</I></B> and <B><I>B</I></B> be <B><I>n</I></B>-by-<B><I>n</I></B> matrices.
<A NAME="3635"></A>
A scalar <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
is called
a <B>generalized eigenvalue</B> <A NAME="3637"></A>
and a non-zero column vector <B><I>x</I></B> the
corresponding <B>right generalized eigenvector</B>
<A NAME="3639"></A> of the pair <B>(<I>A</I>,<I>B</I>)</B>,
if 
<!-- MATH
 $Ax = \lambda Bx$
 -->
<IMG
 WIDTH="85" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img176.png"
 ALT="$Ax = \lambda Bx$">.
A non-zero column vector <B><I>y</I></B> satisfying 
<!-- MATH
 $y^H A = \lambda y^H B$
 -->
<IMG
 WIDTH="109" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img177.png"
 ALT="$y^H A = \lambda y^H B$">
is called the
<B>left generalized eigenvector</B> <A NAME="3641"></A>
corresponding to <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">.
(For
simplicity, we will usually omit the word ``generalized'' when no
confusion is likely to arise.)  If <B><I>B</I></B> is singular, we can have the
<B>infinite eigenvalue</B> <A NAME="3643"></A>

<!-- MATH
 $\lambda = \infty$
 -->
<IMG
 WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img178.png"
 ALT="$\lambda = \infty$">,
by which we mean
<B><I>Bx</I> = 0</B>.  Note that if <B><I>A</I></B> is non-singular, then the equivalent
problem <IMG
 WIDTH="85" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img179.png"
 ALT="$\mu Ax = Bx$">
is perfectly well-defined, and the infinite
eigenvalue corresponds to <IMG
 WIDTH="47" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img180.png"
 ALT="$\mu = 0$">.
The generalized symmetric definite eigenproblem in section 2.3.7
has only finite real eigenvalues. The generalized nonsymmetric
eigenvalue problem can have real, complex or infinite eigenvalues.
To deal with both finite (including zero) and infinite
eigenvalues, the LAPACK routines return two values, <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
and <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">.
If <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
is non-zero then 
<!-- MATH
 $\lambda = \alpha/\beta$
 -->
<IMG
 WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img51.png"
 ALT="$\lambda = \alpha/\beta$">
is an eigenvalue.
If <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
is zero then

<!-- MATH
 $\lambda = \infty$
 -->
<IMG
 WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img178.png"
 ALT="$\lambda = \infty$">
is an eigenvalue of <B>(<I>A</I>, <I>B</I>)</B>.
(Round off may change an exactly zero <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
to a small nonzero value,
changing the eigenvalue 
<!-- MATH
 $\lambda = \infty$
 -->
<IMG
 WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img178.png"
 ALT="$\lambda = \infty$">
to some very large value;
see section&nbsp;<A HREF="node100.html#sec_GNEPErrorBounds">4.11</A> for details.)
A basic task of these
routines is to compute all <B><I>n</I></B> pairs 
<!-- MATH
 $(\alpha,\beta)$
 -->
<IMG
 WIDTH="48" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img181.png"
 ALT="$(\alpha,\beta)$">
and <B><I>x</I></B> and/or
<B><I>y</I></B> for a given pair of matrices <B>(<I>A</I>,<I>B</I>)</B>.

<P>
If the determinant of <IMG
 WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img56.png"
 ALT="$A - \lambda B$">
is identically
zero for all values of <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">,
the eigenvalue problem is called <B>singular</B>; otherwise it is <B>regular</B>.
Singularity of <B>(<I>A</I>,<I>B</I>)</B> is signaled by some

<!-- MATH
 $\alpha = \beta = 0$
 -->
<IMG
 WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img57.png"
 ALT="$\alpha = \beta = 0$">
(in the presence of roundoff, <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
and <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
may be very small).  In this case, the eigenvalue problem is very
ill-conditioned, and in fact some of the other nonzero values of <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
and <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img50.png"
 ALT="$\beta$">
may be indeterminate (see section <A HREF="node105.html#sec_singular">4.11.1.4</A> for further
discussion)
[<A
 HREF="node151.html#stewart72">93</A>,<A
 HREF="node151.html#wilkinson79">105</A>,<A
 HREF="node151.html#demmelkagstrom87">29</A>,<A
 HREF="node151.html#gantmacher">53</A>].

<P>
Another basic task is to compute the <B>generalized Schur decomposition</B>
<A NAME="3650"></A>
of the pair <B>(<I>A</I>,<I>B</I>)</B>.  If <B><I>A</I></B> and <B><I>B</I></B> are complex, then their generalized
Schur decomposition is <B><I>A</I> = <I>QSZ</I><SUP><I>H</I></SUP></B> and <B><I>B</I> = <I>QTZ</I><SUP><I>H</I></SUP></B>, where <B><I>Q</I></B> and <B><I>Z</I></B> are
unitary and <B><I>S</I></B> and <B><I>T</I></B> are upper triangular.  The LAPACK routines
normalize <B><I>T</I></B> to have real non-negative diagonal entries. <A NAME="3651"></A>
Note that in this
form, the eigenvalues can be easily computed from the diagonals:

<!-- MATH
 $\lambda_i = s_{ii}/t_{ii}$
 -->
<IMG
 WIDTH="86" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img182.png"
 ALT="$\lambda_i = s_{ii}/t_{ii}$">
(if <IMG
 WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img183.png"
 ALT="$t_{ii} \neq 0$">)
and

<!-- MATH
 $\lambda_i = \infty$
 -->
<IMG
 WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img184.png"
 ALT="$\lambda_i = \infty$">
(if <B><I>t</I><SUB><I>ii</I></SUB> = 0</B>), and so the LAPACK
routines return  
<!-- MATH
 $\alpha_i = s_{ii}$
 -->
<IMG
 WIDTH="62" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img185.png"
 ALT="$\alpha_i = s_{ii}$">
and 
<!-- MATH
 $\beta_i = t_{ii}$
 -->
<IMG
 WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img186.png"
 ALT="$\beta_i = t_{ii}$">.

<P>
The generalized Schur form depends on the order of the eigenvalues on the
diagonal of <B>(<I>S</I>,<I>T</I>)</B>. This order may optionally be chosen by the user.

<P>
If <B><I>A</I></B> and <B><I>B</I></B> are real, then their generalized Schur decomposition
is <B><I>A</I> = <I>QSZ</I><SUP><I>T</I></SUP></B> and <B><I>B</I> = <I>QTZ</I><SUP><I>T</I></SUP></B>, where <B><I>Q</I></B> and <B><I>Z</I></B> are orthogonal,
<B><I>S</I></B> is quasi-upper triangular with 1-by-1 and 2-by-2 blocks on the
diagonal, and <B><I>T</I></B> is upper triangular with non-negative diagonal entries.
The structure of a typical pair of <B>(<I>S</I>,<I>T</I>)</B> is illustrated below for <B><I>n</I>=6</B>:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
S = \left( \begin{array}{cccccc}
  \times  & \times  & \times  & \times  & \times  & \times   \\
  0 & \times  & \times  & \times  & \times  & \times   \\
  0 & \times  & \times  & \times  & \times  & \times   \\
  0 & 0 & 0 & \times  & \times  & \times   \\
  0 & 0 & 0 & 0 & \times  & \times   \\
  0 & 0 & 0 & 0 & \times  & \times
\end{array} \right), \quad\quad\quad
T = \left( \begin{array}{cccccc}
  \times  & \times  & \times  & \times  & \times  & \times   \\
  0 & \times  & 0  & \times  & \times  & \times   \\
  0 &  0      & \times  & \times  & \times  & \times   \\
  0 & 0 & 0 & \times  & \times  & \times   \\
  0 & 0 & 0 & 0 & \times  & 0        \\
  0 & 0 & 0 & 0 & 0       & \times
\end{array} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="538" HEIGHT="137" BORDER="0"
 SRC="img187.png"
 ALT="\begin{displaymath}
S = \left( \begin{array}{cccccc}
\times &amp; \times &amp; \times &amp;...
...\times &amp; 0 \\
0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \times
\end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The <B>1  x  1</B> diagonal blocks of <B>(<I>S</I>,<I>T</I>)</B>
(those in the (1,1) and (4,4) positions)
contain the real eigenvalues of <B>(<I>A</I>,<I>B</I>)</B> and
the <B>2  x  2</B> diagonal blocks of <B>(<I>S</I>,<I>T</I>)</B>
(those in the (2:3,2:3) and (5:6,5:6) positions)
contain conjugate pairs of complex eigenvalues of <B>(<I>A</I>,<I>B</I>)</B>.
The <B>2  x  2</B> diagonal blocks of <B><I>T</I></B> corresponding to 2-by-2
blocks of <B><I>S</I></B> are made diagonal.
This arrangement enables us to work entirely with real numbers, even when
some of the eigenvalues of <B>(<I>A</I>,<I>B</I>)</B> are complex.
Note that for real eigenvalues, as for all eigenvalues in the complex case,
the <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$\alpha_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
values corresponding to real eigenvalues may be
easily computed from the diagonals of <B><I>S</I></B> and <B><I>T</I></B>.  The <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$\alpha_i$">
and
<IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
values corresponding to complex eigenvalues
of a 2-by-2 diagonal block of <B>(<I>S</I>,<I>T</I>)</B>
are computed by first
computing the complex conjugate eigenvalues <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
and <IMG
 WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img188.png"
 ALT="$\bar{\lambda}$">
of the block,
then computing the values of <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
and <IMG
 WIDTH="37" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img189.png"
 ALT="$\beta_{i+1}$">
that would
result if the block were put into <EM>complex</EM> generalized
Schur form, and finally multiplying to get

<!-- MATH
 $\alpha_i = \lambda \beta_i$
 -->
<IMG
 WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img190.png"
 ALT="$\alpha_i = \lambda \beta_i$">
and 
<!-- MATH
 $\alpha_{i+1}=\bar{\lambda}\beta_{i+1}$
 -->
<IMG
 WIDTH="104" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img191.png"
 ALT="$\alpha_{i+1}=\bar{\lambda}\beta_{i+1}$">.
<BR>

<P>
The columns of <B><I>Q</I></B> and <B><I>Z</I></B> are called <B>generalized Schur vectors</B>
<A NAME="3671"></A>
and span pairs of <B>deflating subspaces</B> of <B><I>A</I></B> and <B><I>B</I></B> [<A
 HREF="node151.html#stewart73">94</A>].
<A NAME="3674"></A><A NAME="3675"></A>
Deflating subspaces are a generalization of invariant subspaces: the first <B><I>k</I></B>
columns of <B><I>Z</I></B> span a right deflating subspace mapped by both <B><I>A</I></B> and
<B><I>B</I></B> into a left deflating subspace spanned by the first <B><I>k</I></B> columns of
<B><I>Q</I></B>.  This pair of deflating subspaces corresponds to the first <B><I>k</I></B>
eigenvalues appearing at the top left corner of <B><I>S</I></B> and <B><I>T</I></B> as explained
in section <A HREF="node35.html#sec_gnep_driver">2.3.5.2</A>. 
<BR>

<P>
The computations proceed in the following stages:
<DL COMPACT>
<DT>1.
<DD>The pair <B>(<I>A</I>,<I>B</I>)</B> is reduced to <B>generalized upper Hessenberg form</B>.
<A NAME="3679"></A>
      If <B><I>A</I></B> and <B><I>B</I></B> are real, this decomposition is <B><I>A</I> = <I>UHV</I><SUP><I>T</I></SUP></B>
      and <B><I>B</I> = <I>U R V</I><SUP><I>T</I></SUP></B> where <B><I>H</I></B> is upper Hessenberg (zero below the
      first subdiagonal), <B><I>R</I></B> is upper triangular, and <B><I>U</I></B> and <B><I>V</I></B>
      are orthogonal.  If <B><I>A</I></B> and <B><I>B</I></B> are complex, the decomposition is
      <B><I>A</I> = <I>UHV</I><SUP><I>H</I></SUP></B> and <B><I>B</I> = <I>URV</I><SUP><I>H</I></SUP></B> with <B><I>U</I></B> and <B><I>V</I></B> unitary, and <B><I>H</I></B>
      and <B><I>R</I></B> as before.  This decomposition is performed by the
      subroutine xGGHRD,
      <A NAME="3680"></A><A NAME="3681"></A><A NAME="3682"></A><A NAME="3683"></A>
      which computes <B><I>H</I></B> and <B><I>R</I></B>, and optionally
      <B><I>U</I></B> and/or <B><I>V</I></B>.  Note that in contrast to xGEHRD (for the standard
      nonsymmetric eigenvalue problem), xGGHRD does not compute <B><I>U</I></B> and
      <B><I>V</I></B> in a factored form.

<P>
<DT>2.
<DD>The pair <B>(<I>H</I>,<I>R</I>)</B> is reduced to generalized Schur form
      <A NAME="3684"></A>
      <B><I>H</I> = <I>QSZ</I><SUP><I>T</I></SUP></B> and <B><I>R</I> = <I>QTZ</I><SUP><I>T</I></SUP></B> (for <B><I>H</I></B> and <B><I>R</I></B> real) or
      <B><I>H</I> = <I>QSZ</I><SUP><I>H</I></SUP></B> and <B><I>R</I> = <I>QTZ</I><SUP><I>H</I></SUP></B> (for <B><I>H</I></B> and <B><I>R</I></B> complex)
      by subroutine xHGEQZ.
      <A NAME="3685"></A>
      <A NAME="3686"></A><A NAME="3687"></A><A NAME="3688"></A><A NAME="3689"></A>
      The values <IMG
 WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$\alpha_i$">
and <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
are also
      computed, where 
<!-- MATH
 $\lambda_i = \alpha_i / \beta_i$
 -->
<IMG
 WIDTH="84" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img192.png"
 ALT="$\lambda_i = \alpha_i / \beta_i$">
are the
      eigenvalues. The matrices <B><I>Z</I></B> and <B><I>Q</I></B> are optionally computed.

<P>
<DT>3.
<DD>The left and/or right eigenvectors of the pair <B>(<I>S</I>,<I>T</I>)</B> are
      computed by xTGEVC.
      <A NAME="3690"></A><A NAME="3691"></A>
      One may optionally transform the right
      eigenvectors of <B>(<I>S</I>,<I>T</I>)</B> to the right eigenvectors of <B>(<I>A</I>,<I>B</I>)</B>
      (or of <B>(<I>H</I>,<I>R</I>)</B>) by passing <B>(<I>UQ</I>,<I>VZ</I>)</B> (or <B>(<I>Q</I>,<I>Z</I>)</B>) to xTGEVC.
      <A NAME="3692"></A><A NAME="3693"></A><A NAME="3694"></A><A NAME="3695"></A>

<P>
</DL>

<P>
Other subsidiary tasks may be performed before or after
those described.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4936"
 HREF="node57.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4930"
 HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4924"
 HREF="node55.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4932"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4934"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4937"
 HREF="node57.html">Balancing</A>
<B> Up:</B> <A NAME="tex2html4931"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4925"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
 &nbsp <B>  <A NAME="tex2html4933"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4935"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>