File: node57.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (259 lines) | stat: -rw-r--r-- 8,189 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Balancing</TITLE>
<META NAME="description" CONTENT="Balancing">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node58.html">
<LINK REL="previous" HREF="node56.html">
<LINK REL="up" HREF="node55.html">
<LINK REL="next" HREF="node58.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4950"
 HREF="node58.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4944"
 HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4938"
 HREF="node56.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4946"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4948"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4951"
 HREF="node58.html">Deflating Subspaces and Condition</A>
<B> Up:</B> <A NAME="tex2html4945"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4939"
 HREF="node56.html">Eigenvalues, Eigenvectors and Generalized</A>
 &nbsp <B>  <A NAME="tex2html4947"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4949"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03248200000000000000">
Balancing</A>
</H3>

<P>
The routine xGGBAL <A NAME="3698"></A><A NAME="3699"></A><A NAME="3700"></A><A NAME="3701"></A>
may be used to <B>balance</B> the matrix pair <B>(<I>A</I>,<I>B</I>)</B>
prior to reduction to generalized Hessenberg form.
<A NAME="3703"></A>
Balancing involves two steps, either of which is optional:
<DL COMPACT>
<DT>1.
<DD>First, xGGBAL attempts to permute <A NAME="3705"></A> <B>(<I>A</I>,<I>B</I>)</B>
by an equivalence transformation
      to block upper triangular form:
      <BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
P_1(A,B)P_2 = (A^\prime,B^\prime) = \left(
        \left[
        \begin{array}{ccc}
          A^\prime_{11} & A^\prime_{12} & A^\prime_{13} \\
          0             & A^\prime_{22} & A^\prime_{23} \\
          0             &      0        & A^\prime_{33} \\
        \end{array}\right],\;\;
        \left[
        \begin{array}{ccc}
          B^\prime_{11} & B^\prime_{12} & B^\prime_{13} \\
          0             & B^\prime_{22} & B^\prime_{23} \\
          0             &      0        & B^\prime_{33} \\
        \end{array}  \right]
        \right)
\end{displaymath}
 -->


<IMG
 WIDTH="537" HEIGHT="73" BORDER="0"
 SRC="img193.png"
 ALT="\begin{displaymath}P_1(A,B)P_2 = (A^\prime,B^\prime) = \left(
\left[
\begin{ar...
... \\
0 &amp; 0 &amp; B^\prime_{33} \\
\end{array} \right]
\right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>P</I><SUB>1</SUB></B> and <B><I>P</I><SUB>2</SUB></B> are permutation matrices and <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img194.png"
 ALT="$A^\prime_{11}$">,
      <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img195.png"
 ALT="$A^\prime_{33}$">,
<IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img196.png"
 ALT="$B^\prime_{11}$">
and <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img197.png"
 ALT="$B^\prime_{33}$">
are <I>upper
      triangular</I>.  Thus the matrix pair is already in generalized Schur
      form outside the central diagonal blocks <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img198.png"
 ALT="$A^\prime_{22}$">
and
      <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img199.png"
 ALT="$B^\prime_{22}$">
in rows and columns ILO to IHI.  Subsequent operations
      by xGGBAL, xGGHRD or xHGEQZ need only be applied to these rows and
      columns; therefore ILO and IHI are passed as arguments to xGGHRD and
      xHGEQZ.  This can save a significant amount of work if ILO <B>&gt; 1</B>
      or IHI <B>&lt; <I>n</I></B>.  If no suitable permutations can be found (as is very
      often the case), xGGBAL sets ILO <B>= 1</B> and IHI <B>= <I>n</I></B>, and
      <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img198.png"
 ALT="$A^\prime_{22}$">
is the whole of <B><I>A</I></B> and <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img199.png"
 ALT="$B^\prime_{22}$">
is the whole
      of <B><I>B</I></B>.

<P>
<DT>2.
<DD>Secondly, xGGBAL applies diagonal equivalence transformations
      to 
<!-- MATH
 $(A^\prime,B^\prime)$
 -->
<IMG
 WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img200.png"
 ALT="$(A^\prime,B^\prime)$">
to attempt to make the matrix norm smaller
      with respect
      to the eigenvalues and tries to reduce the inaccuracy contributed by
      roundoff [<A
 HREF="node151.html#ward81">100</A>]:
      <BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="679" HEIGHT="104" BORDER="0"
 SRC="img201.png"
 ALT="\begin{eqnarray*}
(A^{\prime\prime},B^{\prime\prime}) &amp; = &amp;
D_1(A^\prime,B^\pr...
...&amp; 0 &amp; 0 \\
0 &amp; D'_2 &amp; 0 \\
0 &amp; 0 &amp; I \\ \end{array} \right]
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
      This can improve the accuracy of later processing in some cases; see
      subsection <A HREF="node103.html#GENP32">4.11.1.2</A>.

<P>
</DL>

<P>
If the matrix pair <B>(<I>A</I>,<I>B</I>)</B> was balanced by xGGBAL, then eigenvectors
computed by subsequent operations are eigenvectors of the balanced
matrix pair 
<!-- MATH
 $(A^{\prime\prime},B^{\prime\prime})$
 -->
<IMG
 WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img202.png"
 ALT="$(A^{\prime\prime},B^{\prime\prime})$">.
xGGBAK
<A NAME="3766"></A><A NAME="3767"></A><A NAME="3768"></A><A NAME="3769"></A>
must then
be called to transform them back to eigenvectors of the original matrix
pair <B>(<I>A</I>,<I>B</I>)</B>.
Note that these transformations can improve speed and accuracy of
later processing in some cases; however, the diagonal transformation
step can occasionally make the norm of the pencil 
<!-- MATH
 $(A^\prime,B^\prime)$
 -->
<IMG
 WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img200.png"
 ALT="$(A^\prime,B^\prime)$">
larger
and hence degrade the accuracy.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4950"
 HREF="node58.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4944"
 HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4938"
 HREF="node56.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4946"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4948"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4951"
 HREF="node58.html">Deflating Subspaces and Condition</A>
<B> Up:</B> <A NAME="tex2html4945"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4939"
 HREF="node56.html">Eigenvalues, Eigenvectors and Generalized</A>
 &nbsp <B>  <A NAME="tex2html4947"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4949"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>