1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Balancing</TITLE>
<META NAME="description" CONTENT="Balancing">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node58.html">
<LINK REL="previous" HREF="node56.html">
<LINK REL="up" HREF="node55.html">
<LINK REL="next" HREF="node58.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4950"
HREF="node58.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4944"
HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4938"
HREF="node56.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4946"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4948"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4951"
HREF="node58.html">Deflating Subspaces and Condition</A>
<B> Up:</B> <A NAME="tex2html4945"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4939"
HREF="node56.html">Eigenvalues, Eigenvectors and Generalized</A>
  <B> <A NAME="tex2html4947"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4949"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03248200000000000000">
Balancing</A>
</H3>
<P>
The routine xGGBAL <A NAME="3698"></A><A NAME="3699"></A><A NAME="3700"></A><A NAME="3701"></A>
may be used to <B>balance</B> the matrix pair <B>(<I>A</I>,<I>B</I>)</B>
prior to reduction to generalized Hessenberg form.
<A NAME="3703"></A>
Balancing involves two steps, either of which is optional:
<DL COMPACT>
<DT>1.
<DD>First, xGGBAL attempts to permute <A NAME="3705"></A> <B>(<I>A</I>,<I>B</I>)</B>
by an equivalence transformation
to block upper triangular form:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
P_1(A,B)P_2 = (A^\prime,B^\prime) = \left(
\left[
\begin{array}{ccc}
A^\prime_{11} & A^\prime_{12} & A^\prime_{13} \\
0 & A^\prime_{22} & A^\prime_{23} \\
0 & 0 & A^\prime_{33} \\
\end{array}\right],\;\;
\left[
\begin{array}{ccc}
B^\prime_{11} & B^\prime_{12} & B^\prime_{13} \\
0 & B^\prime_{22} & B^\prime_{23} \\
0 & 0 & B^\prime_{33} \\
\end{array} \right]
\right)
\end{displaymath}
-->
<IMG
WIDTH="537" HEIGHT="73" BORDER="0"
SRC="img193.png"
ALT="\begin{displaymath}P_1(A,B)P_2 = (A^\prime,B^\prime) = \left(
\left[
\begin{ar...
... \\
0 & 0 & B^\prime_{33} \\
\end{array} \right]
\right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>P</I><SUB>1</SUB></B> and <B><I>P</I><SUB>2</SUB></B> are permutation matrices and <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img194.png"
ALT="$A^\prime_{11}$">,
<IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img195.png"
ALT="$A^\prime_{33}$">,
<IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img196.png"
ALT="$B^\prime_{11}$">
and <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img197.png"
ALT="$B^\prime_{33}$">
are <I>upper
triangular</I>. Thus the matrix pair is already in generalized Schur
form outside the central diagonal blocks <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img198.png"
ALT="$A^\prime_{22}$">
and
<IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img199.png"
ALT="$B^\prime_{22}$">
in rows and columns ILO to IHI. Subsequent operations
by xGGBAL, xGGHRD or xHGEQZ need only be applied to these rows and
columns; therefore ILO and IHI are passed as arguments to xGGHRD and
xHGEQZ. This can save a significant amount of work if ILO <B>> 1</B>
or IHI <B>< <I>n</I></B>. If no suitable permutations can be found (as is very
often the case), xGGBAL sets ILO <B>= 1</B> and IHI <B>= <I>n</I></B>, and
<IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img198.png"
ALT="$A^\prime_{22}$">
is the whole of <B><I>A</I></B> and <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img199.png"
ALT="$B^\prime_{22}$">
is the whole
of <B><I>B</I></B>.
<P>
<DT>2.
<DD>Secondly, xGGBAL applies diagonal equivalence transformations
to
<!-- MATH
$(A^\prime,B^\prime)$
-->
<IMG
WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img200.png"
ALT="$(A^\prime,B^\prime)$">
to attempt to make the matrix norm smaller
with respect
to the eigenvalues and tries to reduce the inaccuracy contributed by
roundoff [<A
HREF="node151.html#ward81">100</A>]:
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="679" HEIGHT="104" BORDER="0"
SRC="img201.png"
ALT="\begin{eqnarray*}
(A^{\prime\prime},B^{\prime\prime}) & = &
D_1(A^\prime,B^\pr...
...& 0 & 0 \\
0 & D'_2 & 0 \\
0 & 0 & I \\ \end{array} \right]
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
This can improve the accuracy of later processing in some cases; see
subsection <A HREF="node103.html#GENP32">4.11.1.2</A>.
<P>
</DL>
<P>
If the matrix pair <B>(<I>A</I>,<I>B</I>)</B> was balanced by xGGBAL, then eigenvectors
computed by subsequent operations are eigenvectors of the balanced
matrix pair
<!-- MATH
$(A^{\prime\prime},B^{\prime\prime})$
-->
<IMG
WIDTH="69" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img202.png"
ALT="$(A^{\prime\prime},B^{\prime\prime})$">.
xGGBAK
<A NAME="3766"></A><A NAME="3767"></A><A NAME="3768"></A><A NAME="3769"></A>
must then
be called to transform them back to eigenvectors of the original matrix
pair <B>(<I>A</I>,<I>B</I>)</B>.
Note that these transformations can improve speed and accuracy of
later processing in some cases; however, the diagonal transformation
step can occasionally make the norm of the pencil
<!-- MATH
$(A^\prime,B^\prime)$
-->
<IMG
WIDTH="62" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img200.png"
ALT="$(A^\prime,B^\prime)$">
larger
and hence degrade the accuracy.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4950"
HREF="node58.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4944"
HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4938"
HREF="node56.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4946"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4948"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4951"
HREF="node58.html">Deflating Subspaces and Condition</A>
<B> Up:</B> <A NAME="tex2html4945"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4939"
HREF="node56.html">Eigenvalues, Eigenvectors and Generalized</A>
  <B> <A NAME="tex2html4947"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4949"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|