File: node58.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (329 lines) | stat: -rw-r--r-- 12,221 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Deflating Subspaces and Condition Numbers</TITLE>
<META NAME="description" CONTENT="Deflating Subspaces and Condition Numbers">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node57.html">
<LINK REL="up" HREF="node55.html">
<LINK REL="next" HREF="node59.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4962"
 HREF="node59.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4956"
 HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4952"
 HREF="node57.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4958"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4960"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4963"
 HREF="node59.html">Generalized (or Quotient) Singular</A>
<B> Up:</B> <A NAME="tex2html4957"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4953"
 HREF="node57.html">Balancing</A>
 &nbsp <B>  <A NAME="tex2html4959"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4961"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03248300000000000000">
Deflating Subspaces and Condition Numbers</A>
</H3>

<P>
The generalized Schur <A NAME="3771"></A>
form depends on the order of the eigenvalues on the
diagonal of <B>(<I>S</I>,<I>T</I>)</B> and this may optionally be chosen by the user.  Suppose
the user chooses that 
<!-- MATH
 $(\alpha_1,\beta_1),\ldots,(\alpha_j,\beta_j),
1 \leq j \leq n$
 -->
<IMG
 WIDTH="238" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img203.png"
 ALT="$(\alpha_1,\beta_1),\ldots,(\alpha_j,\beta_j),
1 \leq j \leq n$">,
appear in the upper left corner of <B>(<I>S</I>,<I>T</I>)</B>.  Then the
first <B><I>j</I></B> columns of <B><I>UQ</I></B> and <B><I>VZ</I></B> span the <B>left and right deflating
subspaces</B>  <A NAME="3773"></A><A NAME="3774"></A>
of <B>(<I>A</I>,<I>B</I>)</B> corresponding to 
<!-- MATH
 $(\alpha_1,\beta_1),\ldots, (\alpha_j,\beta_j)$
 -->
<IMG
 WIDTH="157" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img204.png"
 ALT="$(\alpha_1,\beta_1),\ldots, (\alpha_j,\beta_j)$">.

<P>
The following routines perform this reordering
<A NAME="3775"></A>
and also compute condition
numbers for eigenvalues, eigenvectors and deflating subspaces:
<DL COMPACT>
<DT>1.
<DD>xTGEXC<A NAME="3777"></A><A NAME="3778"></A><A NAME="3779"></A><A NAME="3780"></A>
will move an eigenvalue pair (or a pair of 2-by-2 blocks)
      on the diagonal of the generalized Schur form <B>(<I>S</I>,<I>T</I>)</B>
      <A NAME="3781"></A>
      from its
      original position to any other position.  It may be used to choose
      the order in which eigenvalues appear in the generalized Schur
      form.  The reordering is performed with orthogonal (unitary)
      transformation matrices.  For more details see
      [<A
 HREF="node151.html#kagstrom93">70</A>,<A
 HREF="node151.html#kagstromporomaa94a">73</A>].

<P>
<DT>2.
<DD>xTGSYL<A NAME="3783"></A><A NAME="3784"></A><A NAME="3785"></A><A NAME="3786"></A>
      solves the generalized Sylvester equations
      <A NAME="3787"></A>
      <B><I>AR</I> - <I>LB</I> = <I>sC</I></B> and <B><I>DR</I> - <I>LE</I> =<I>sF</I></B> for <B><I>L</I></B> and <B><I>R</I></B>, given <B><I>A</I></B> and <B><I>B</I></B>
      upper (quasi-)triangular and <B><I>D</I></B> and <B><I>E</I></B> upper triangular.  It
      is also possible to solve a transposed system (conjugate transposed
      system in the complex case) 
<!-- MATH
 $A^T X + D^T Y = sC$
 -->
<B><I>A</I><SUP><I>T</I></SUP> <I>X</I> + <I>D</I><SUP><I>T</I></SUP> <I>Y</I> = <I>sC</I></B> and
      
<!-- MATH
 $-X B^T - Y E^T = sF$
 -->
<B>-<I>X B</I><SUP><I>T</I></SUP> - <I>Y E</I><SUP><I>T</I></SUP> = <I>sF</I></B>
      for <B><I>X</I></B> and <B><I>Y</I></B>.  The scaling factor <B><I>s</I></B> is set during the
      computations to avoid overflow.  Optionally, xTGSYL computes a
      Frobenius norm-based estimate of the ``separation'' between the two
      matrix pairs <B>(<I>A</I>,<I>B</I>)</B> and <B>(<I>D</I>,<I>E</I>)</B>.  xTGSYL is used by the routines
      xTGSNA and xTGSEN, but it is also of independent interest.
      For more details see [<A
 HREF="node151.html#kagstrom94">71</A>,<A
 HREF="node151.html#kagstromporomaa93a">74</A>,<A
 HREF="node151.html#kagstromwestin89">75</A>].

<P>
<DT>3.
<DD>xTGSNA<A NAME="3789"></A><A NAME="3790"></A><A NAME="3791"></A><A NAME="3792"></A>
      computes condition numbers of the
      eigenvalues and/or left and right eigenvectors of a matrix pair
      <B>(<I>S</I>,<I>T</I>)</B> in generalized Schur form.
      <A NAME="3793"></A>
      These are the same as the
      condition numbers of the eigenvalues and eigenvectors of the
      original matrix pair <B>(<I>A</I>,<I>B</I>)</B>, from which <B>(<I>S</I>,<I>T</I>)</B> is derived. The
      user may compute these condition numbers for all eigenvalues and
      associated eigenvectors, or for any selected subset.  For more
      details see section&nbsp;<A HREF="node100.html#sec_GNEPErrorBounds">4.11</A> and
      [<A
 HREF="node151.html#kagstromporomaa94a">73</A>].

<P>
<DT>4.
<DD>xTGSEN<A NAME="3796"></A><A NAME="3797"></A><A NAME="3798"></A><A NAME="3799"></A>
      <A NAME="3800"></A>
      moves a selected subset of the eigenvalues of a matrix pair
      <B>(<I>S</I>,<I>T</I>)</B> in generalized Schur form to the upper left corner of
      <B>(<I>S</I>,<I>T</I>)</B>, and optionally computes condition numbers
      <A NAME="3801"></A>
      of their average value and their associated pair of (left
      and right) deflating subspaces.  These are the same as the condition
      numbers of the average eigenvalue and the deflating subspace pair
      of the original matrix pair <B>(<I>A</I>,<I>B</I>)</B>, from which <B>(<I>S</I>,<I>T</I>)</B> is derived.
      For more details see section&nbsp;<A HREF="node100.html#sec_GNEPErrorBounds">4.11</A> and
      [<A
 HREF="node151.html#kagstromporomaa94a">73</A>].

<P>
</DL>

<P>
See Table <A HREF="node58.html#tabcompgeneig2">2.15</A> for a complete list of the routines, where,
to save space, the word ``generalized'' is omitted.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabcompgeneig2"></A><A NAME="3807"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.15:</STRONG>
Computational routines for the generalized nonsymmetric eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">general</TD>
<TD ALIGN="LEFT">Hessenberg reduction</TD>
<TD ALIGN="LEFT">SGGHRD<A NAME="3818"></A></TD>
<TD ALIGN="LEFT">CGGHRD<A NAME="3819"></A></TD>
<TD ALIGN="LEFT">DGGHRD<A NAME="3820"></A></TD>
<TD ALIGN="LEFT">ZGGHRD<A NAME="3821"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">balancing</TD>
<TD ALIGN="LEFT">SGGBAL<A NAME="3822"></A></TD>
<TD ALIGN="LEFT">CGGBAL<A NAME="3823"></A></TD>
<TD ALIGN="LEFT">DGGBAL<A NAME="3824"></A></TD>
<TD ALIGN="LEFT">ZGGBAL<A NAME="3825"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">back transforming</TD>
<TD ALIGN="LEFT">SGGBAK<A NAME="3826"></A></TD>
<TD ALIGN="LEFT">CGGBAK<A NAME="3827"></A></TD>
<TD ALIGN="LEFT">DGGBAK<A NAME="3828"></A></TD>
<TD ALIGN="LEFT">ZGGBAK<A NAME="3829"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">Hessenberg</TD>
<TD ALIGN="LEFT">Schur factorization</TD>
<TD ALIGN="LEFT">SHGEQZ<A NAME="3830"></A></TD>
<TD ALIGN="LEFT">CHGEQZ<A NAME="3831"></A></TD>
<TD ALIGN="LEFT">DHGEQZ<A NAME="3832"></A></TD>
<TD ALIGN="LEFT">ZHGEQZ<A NAME="3833"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(quasi)triangular</TD>
<TD ALIGN="LEFT">eigenvectors</TD>
<TD ALIGN="LEFT">STGEVC<A NAME="3834"></A></TD>
<TD ALIGN="LEFT">CTGEVC<A NAME="3835"></A></TD>
<TD ALIGN="LEFT">DTGEVC<A NAME="3836"></A></TD>
<TD ALIGN="LEFT">ZTGEVC<A NAME="3837"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">reordering</TD>
<TD ALIGN="LEFT">STGEXC<A NAME="3838"></A></TD>
<TD ALIGN="LEFT">CTGEXC<A NAME="3839"></A></TD>
<TD ALIGN="LEFT">DTGEXC<A NAME="3840"></A></TD>
<TD ALIGN="LEFT">ZTGEXC<A NAME="3841"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">Schur decomposition</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">Sylvester equation</TD>
<TD ALIGN="LEFT">STGSYL<A NAME="3842"></A></TD>
<TD ALIGN="LEFT">CTGSYL<A NAME="3843"></A></TD>
<TD ALIGN="LEFT">DTGSYL<A NAME="3844"></A></TD>
<TD ALIGN="LEFT">ZTGSYL<A NAME="3845"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">condition numbers of</TD>
<TD ALIGN="LEFT">STGSNA<A NAME="3846"></A></TD>
<TD ALIGN="LEFT">CTGSNA<A NAME="3847"></A></TD>
<TD ALIGN="LEFT">DTGSNA<A NAME="3848"></A></TD>
<TD ALIGN="LEFT">ZTGSNA<A NAME="3849"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalues/vectors</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">condition numbers of</TD>
<TD ALIGN="LEFT">STGSEN<A NAME="3850"></A></TD>
<TD ALIGN="LEFT">CTGSEN<A NAME="3851"></A></TD>
<TD ALIGN="LEFT">DTGSEN<A NAME="3852"></A></TD>
<TD ALIGN="LEFT">ZTGSEN<A NAME="3853"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">eigenvalue cluster/</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">deflating subspaces</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">&nbsp;</TD>
</TR>
</TABLE>
</DIV>
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4962"
 HREF="node59.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4956"
 HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4952"
 HREF="node57.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4958"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4960"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4963"
 HREF="node59.html">Generalized (or Quotient) Singular</A>
<B> Up:</B> <A NAME="tex2html4957"
 HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4953"
 HREF="node57.html">Balancing</A>
 &nbsp <B>  <A NAME="tex2html4959"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4961"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>