1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Deflating Subspaces and Condition Numbers</TITLE>
<META NAME="description" CONTENT="Deflating Subspaces and Condition Numbers">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node57.html">
<LINK REL="up" HREF="node55.html">
<LINK REL="next" HREF="node59.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4962"
HREF="node59.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4956"
HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4952"
HREF="node57.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4958"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4960"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4963"
HREF="node59.html">Generalized (or Quotient) Singular</A>
<B> Up:</B> <A NAME="tex2html4957"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4953"
HREF="node57.html">Balancing</A>
  <B> <A NAME="tex2html4959"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4961"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03248300000000000000">
Deflating Subspaces and Condition Numbers</A>
</H3>
<P>
The generalized Schur <A NAME="3771"></A>
form depends on the order of the eigenvalues on the
diagonal of <B>(<I>S</I>,<I>T</I>)</B> and this may optionally be chosen by the user. Suppose
the user chooses that
<!-- MATH
$(\alpha_1,\beta_1),\ldots,(\alpha_j,\beta_j),
1 \leq j \leq n$
-->
<IMG
WIDTH="238" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img203.png"
ALT="$(\alpha_1,\beta_1),\ldots,(\alpha_j,\beta_j),
1 \leq j \leq n$">,
appear in the upper left corner of <B>(<I>S</I>,<I>T</I>)</B>. Then the
first <B><I>j</I></B> columns of <B><I>UQ</I></B> and <B><I>VZ</I></B> span the <B>left and right deflating
subspaces</B> <A NAME="3773"></A><A NAME="3774"></A>
of <B>(<I>A</I>,<I>B</I>)</B> corresponding to
<!-- MATH
$(\alpha_1,\beta_1),\ldots, (\alpha_j,\beta_j)$
-->
<IMG
WIDTH="157" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img204.png"
ALT="$(\alpha_1,\beta_1),\ldots, (\alpha_j,\beta_j)$">.
<P>
The following routines perform this reordering
<A NAME="3775"></A>
and also compute condition
numbers for eigenvalues, eigenvectors and deflating subspaces:
<DL COMPACT>
<DT>1.
<DD>xTGEXC<A NAME="3777"></A><A NAME="3778"></A><A NAME="3779"></A><A NAME="3780"></A>
will move an eigenvalue pair (or a pair of 2-by-2 blocks)
on the diagonal of the generalized Schur form <B>(<I>S</I>,<I>T</I>)</B>
<A NAME="3781"></A>
from its
original position to any other position. It may be used to choose
the order in which eigenvalues appear in the generalized Schur
form. The reordering is performed with orthogonal (unitary)
transformation matrices. For more details see
[<A
HREF="node151.html#kagstrom93">70</A>,<A
HREF="node151.html#kagstromporomaa94a">73</A>].
<P>
<DT>2.
<DD>xTGSYL<A NAME="3783"></A><A NAME="3784"></A><A NAME="3785"></A><A NAME="3786"></A>
solves the generalized Sylvester equations
<A NAME="3787"></A>
<B><I>AR</I> - <I>LB</I> = <I>sC</I></B> and <B><I>DR</I> - <I>LE</I> =<I>sF</I></B> for <B><I>L</I></B> and <B><I>R</I></B>, given <B><I>A</I></B> and <B><I>B</I></B>
upper (quasi-)triangular and <B><I>D</I></B> and <B><I>E</I></B> upper triangular. It
is also possible to solve a transposed system (conjugate transposed
system in the complex case)
<!-- MATH
$A^T X + D^T Y = sC$
-->
<B><I>A</I><SUP><I>T</I></SUP> <I>X</I> + <I>D</I><SUP><I>T</I></SUP> <I>Y</I> = <I>sC</I></B> and
<!-- MATH
$-X B^T - Y E^T = sF$
-->
<B>-<I>X B</I><SUP><I>T</I></SUP> - <I>Y E</I><SUP><I>T</I></SUP> = <I>sF</I></B>
for <B><I>X</I></B> and <B><I>Y</I></B>. The scaling factor <B><I>s</I></B> is set during the
computations to avoid overflow. Optionally, xTGSYL computes a
Frobenius norm-based estimate of the ``separation'' between the two
matrix pairs <B>(<I>A</I>,<I>B</I>)</B> and <B>(<I>D</I>,<I>E</I>)</B>. xTGSYL is used by the routines
xTGSNA and xTGSEN, but it is also of independent interest.
For more details see [<A
HREF="node151.html#kagstrom94">71</A>,<A
HREF="node151.html#kagstromporomaa93a">74</A>,<A
HREF="node151.html#kagstromwestin89">75</A>].
<P>
<DT>3.
<DD>xTGSNA<A NAME="3789"></A><A NAME="3790"></A><A NAME="3791"></A><A NAME="3792"></A>
computes condition numbers of the
eigenvalues and/or left and right eigenvectors of a matrix pair
<B>(<I>S</I>,<I>T</I>)</B> in generalized Schur form.
<A NAME="3793"></A>
These are the same as the
condition numbers of the eigenvalues and eigenvectors of the
original matrix pair <B>(<I>A</I>,<I>B</I>)</B>, from which <B>(<I>S</I>,<I>T</I>)</B> is derived. The
user may compute these condition numbers for all eigenvalues and
associated eigenvectors, or for any selected subset. For more
details see section <A HREF="node100.html#sec_GNEPErrorBounds">4.11</A> and
[<A
HREF="node151.html#kagstromporomaa94a">73</A>].
<P>
<DT>4.
<DD>xTGSEN<A NAME="3796"></A><A NAME="3797"></A><A NAME="3798"></A><A NAME="3799"></A>
<A NAME="3800"></A>
moves a selected subset of the eigenvalues of a matrix pair
<B>(<I>S</I>,<I>T</I>)</B> in generalized Schur form to the upper left corner of
<B>(<I>S</I>,<I>T</I>)</B>, and optionally computes condition numbers
<A NAME="3801"></A>
of their average value and their associated pair of (left
and right) deflating subspaces. These are the same as the condition
numbers of the average eigenvalue and the deflating subspace pair
of the original matrix pair <B>(<I>A</I>,<I>B</I>)</B>, from which <B>(<I>S</I>,<I>T</I>)</B> is derived.
For more details see section <A HREF="node100.html#sec_GNEPErrorBounds">4.11</A> and
[<A
HREF="node151.html#kagstromporomaa94a">73</A>].
<P>
</DL>
<P>
See Table <A HREF="node58.html#tabcompgeneig2">2.15</A> for a complete list of the routines, where,
to save space, the word ``generalized'' is omitted.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabcompgeneig2"></A><A NAME="3807"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.15:</STRONG>
Computational routines for the generalized nonsymmetric eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Type of matrix</TD>
<TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">and storage scheme</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">general</TD>
<TD ALIGN="LEFT">Hessenberg reduction</TD>
<TD ALIGN="LEFT">SGGHRD<A NAME="3818"></A></TD>
<TD ALIGN="LEFT">CGGHRD<A NAME="3819"></A></TD>
<TD ALIGN="LEFT">DGGHRD<A NAME="3820"></A></TD>
<TD ALIGN="LEFT">ZGGHRD<A NAME="3821"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">balancing</TD>
<TD ALIGN="LEFT">SGGBAL<A NAME="3822"></A></TD>
<TD ALIGN="LEFT">CGGBAL<A NAME="3823"></A></TD>
<TD ALIGN="LEFT">DGGBAL<A NAME="3824"></A></TD>
<TD ALIGN="LEFT">ZGGBAL<A NAME="3825"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">back transforming</TD>
<TD ALIGN="LEFT">SGGBAK<A NAME="3826"></A></TD>
<TD ALIGN="LEFT">CGGBAK<A NAME="3827"></A></TD>
<TD ALIGN="LEFT">DGGBAK<A NAME="3828"></A></TD>
<TD ALIGN="LEFT">ZGGBAK<A NAME="3829"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">Hessenberg</TD>
<TD ALIGN="LEFT">Schur factorization</TD>
<TD ALIGN="LEFT">SHGEQZ<A NAME="3830"></A></TD>
<TD ALIGN="LEFT">CHGEQZ<A NAME="3831"></A></TD>
<TD ALIGN="LEFT">DHGEQZ<A NAME="3832"></A></TD>
<TD ALIGN="LEFT">ZHGEQZ<A NAME="3833"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">(quasi)triangular</TD>
<TD ALIGN="LEFT">eigenvectors</TD>
<TD ALIGN="LEFT">STGEVC<A NAME="3834"></A></TD>
<TD ALIGN="LEFT">CTGEVC<A NAME="3835"></A></TD>
<TD ALIGN="LEFT">DTGEVC<A NAME="3836"></A></TD>
<TD ALIGN="LEFT">ZTGEVC<A NAME="3837"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">reordering</TD>
<TD ALIGN="LEFT">STGEXC<A NAME="3838"></A></TD>
<TD ALIGN="LEFT">CTGEXC<A NAME="3839"></A></TD>
<TD ALIGN="LEFT">DTGEXC<A NAME="3840"></A></TD>
<TD ALIGN="LEFT">ZTGEXC<A NAME="3841"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">Schur decomposition</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">Sylvester equation</TD>
<TD ALIGN="LEFT">STGSYL<A NAME="3842"></A></TD>
<TD ALIGN="LEFT">CTGSYL<A NAME="3843"></A></TD>
<TD ALIGN="LEFT">DTGSYL<A NAME="3844"></A></TD>
<TD ALIGN="LEFT">ZTGSYL<A NAME="3845"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">condition numbers of</TD>
<TD ALIGN="LEFT">STGSNA<A NAME="3846"></A></TD>
<TD ALIGN="LEFT">CTGSNA<A NAME="3847"></A></TD>
<TD ALIGN="LEFT">DTGSNA<A NAME="3848"></A></TD>
<TD ALIGN="LEFT">ZTGSNA<A NAME="3849"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvalues/vectors</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">condition numbers of</TD>
<TD ALIGN="LEFT">STGSEN<A NAME="3850"></A></TD>
<TD ALIGN="LEFT">CTGSEN<A NAME="3851"></A></TD>
<TD ALIGN="LEFT">DTGSEN<A NAME="3852"></A></TD>
<TD ALIGN="LEFT">ZTGSEN<A NAME="3853"></A></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">eigenvalue cluster/</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">deflating subspaces</TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT"> </TD>
</TR>
</TABLE>
</DIV>
<BR>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4962"
HREF="node59.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4956"
HREF="node55.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4952"
HREF="node57.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4958"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4960"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4963"
HREF="node59.html">Generalized (or Quotient) Singular</A>
<B> Up:</B> <A NAME="tex2html4957"
HREF="node55.html">Generalized Nonsymmetric Eigenproblems</A>
<B> Previous:</B> <A NAME="tex2html4953"
HREF="node57.html">Balancing</A>
  <B> <A NAME="tex2html4959"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4961"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|