1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized (or Quotient) Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Generalized (or Quotient) Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node55.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node60.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4974"
HREF="node60.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4968"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4964"
HREF="node58.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4970"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4972"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4975"
HREF="node60.html">Performance of LAPACK</A>
<B> Up:</B> <A NAME="tex2html4969"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4965"
HREF="node58.html">Deflating Subspaces and Condition</A>
  <B> <A NAME="tex2html4971"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4973"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03249000000000000000"></A><A NAME="sectionGSVDcomputational"></A>
<BR>
Generalized (or Quotient) Singular Value Decomposition
</H2>
<P>
<A NAME="3858"></A><A NAME="3859"></A>
<A NAME="3860"></A>
<A NAME="3861"></A>
The <B>generalized (or quotient) singular value decomposition</B>
of an <B><I>m</I></B>-by-<B><I>n</I></B> matrix <B><I>A</I></B> and a <B><I>p</I></B>-by-<B><I>n</I></B> matrix <B><I>B</I></B> is described
in section <A HREF="node33.html#subsecdrivegeig">2.3.5</A>.
The routines described in this section, are used
to compute the decomposition. The computation proceeds in the following
two stages:
<DL COMPACT>
<DT>1.
<DD>xGGSVP<A NAME="3865"></A><A NAME="3866"></A><A NAME="3867"></A><A NAME="3868"></A> is used to reduce the matrices <B><I>A</I></B> and <B><I>B</I></B> to triangular form:
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="373" HEIGHT="177" BORDER="0"
SRC="img205.png"
ALT="\begin{eqnarray*}
U^T_1 A Q_1 & = & \bordermatrix{ & n-k-l & k & l \cr
\hfill k...
...-l & k & l \cr
\hfill l & 0 & 0 & B_{13} \cr
p-l & 0 & 0 & 0 }
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
where <B><I>A</I><SUB>12</SUB></B> and <B><I>B</I><SUB>13</SUB></B> are nonsingular upper triangular, and
<B><I>A</I><SUB>23</SUB></B> is upper triangular.
If <B><I>m</I>-<I>k</I>-<I>l</I> < 0</B>, the bottom zero block of <B><I>U</I><SUB>1</SUB><SUP><I>T</I></SUP> <I>A Q</I><SUB>1</SUB></B> does not appear,
and <B><I>A</I><SUB>23</SUB></B> is upper trapezoidal.
<B><I>U</I><SUB>1</SUB></B>, <B><I>V</I><SUB>1</SUB></B> and <B><I>Q</I><SUB>1</SUB></B> are
orthogonal matrices (or unitary matrices if <B><I>A</I></B> and <B><I>B</I></B> are complex).
<B><I>l</I></B> is the rank of <B><I>B</I></B>, and
<B><I>k</I>+<I>l</I></B> is the rank of
<!-- MATH
$\left( \begin{array}{c} A \\B \end{array} \right)$
-->
<IMG
WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img19.png"
ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">.
<P>
<DT>2.
<DD>The generalized singular value decomposition of two <B><I>l</I></B>-by-<B><I>l</I></B>
upper triangular matrices <B><I>A</I><SUB>23</SUB></B> and <B><I>B</I><SUB>13</SUB></B> is computed using
xTGSJA<A NAME="tex2html1653"
HREF="footnode.html#foot3940"><SUP>2.2</SUP></A>:
<A NAME="3883"></A><A NAME="3884"></A><A NAME="3885"></A><A NAME="3886"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A_{23} = U_2 C R Q^T_2 \quad \mbox{and} \quad
B_{13} = V_2 S R Q^T_2 \; \; .
\end{displaymath}
-->
<IMG
WIDTH="316" HEIGHT="31" BORDER="0"
SRC="img206.png"
ALT="\begin{displaymath}
A_{23} = U_2 C R Q^T_2 \quad \mbox{and} \quad
B_{13} = V_2 S R Q^T_2 \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Here <B><I>U</I><SUB>2</SUB></B>, <B><I>V</I><SUB>2</SUB></B> and <B><I>Q</I><SUB>2</SUB></B> are orthogonal (or unitary) matrices,
<B><I>C</I></B> and <B><I>S</I></B> are both real
nonnegative diagonal matrices satisfying <B><I>C</I><SUP>2</SUP> + <I>S</I><SUP>2</SUP> = <I>I</I></B>, <B><I>S</I></B> is nonsingular,
and <B><I>R</I></B> is upper triangular and nonsingular.
</DL>
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabcompGSVD"></A>
<DIV ALIGN="CENTER">
<A NAME="3892"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.16:</STRONG>
Computational routines for the generalized singular value decomposition</CAPTION>
<TR><TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">triangular reduction of <B><I>A</I></B> and <B><I>B</I></B></TD>
<TD ALIGN="LEFT">SGGSVP<A NAME="3904"></A></TD>
<TD ALIGN="LEFT">CGGSVP<A NAME="3905"></A></TD>
<TD ALIGN="LEFT">DGGSVP<A NAME="3906"></A></TD>
<TD ALIGN="LEFT">ZGGSVP<A NAME="3907"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">GSVD of a pair of triangular matrices</TD>
<TD ALIGN="LEFT">STGSJA<A NAME="3908"></A></TD>
<TD ALIGN="LEFT">CTGSJA<A NAME="3909"></A></TD>
<TD ALIGN="LEFT">DTGSJA<A NAME="3910"></A></TD>
<TD ALIGN="LEFT">ZTGSJA<A NAME="3911"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
The reduction to triangular form, performed by
xGGSVP, uses QR decomposition with column pivoting
<A NAME="3915"></A>
for numerical rank determination. See [<A
HREF="node151.html#baizha93">8</A>] for details.
<A NAME="3917"></A>
<P>
The generalized singular value decomposition of two
triangular matrices, performed by xTGSJA, is done
using a Jacobi-like method as described in [<A
HREF="node151.html#paige86a">83</A>,<A
HREF="node151.html#baidemmel92b">10</A>].
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4974"
HREF="node60.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html4968"
HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html4964"
HREF="node58.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html4970"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html4972"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html4975"
HREF="node60.html">Performance of LAPACK</A>
<B> Up:</B> <A NAME="tex2html4969"
HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4965"
HREF="node58.html">Deflating Subspaces and Condition</A>
  <B> <A NAME="tex2html4971"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html4973"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|