File: node59.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (233 lines) | stat: -rw-r--r-- 8,099 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Generalized (or Quotient) Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Generalized (or Quotient) Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node55.html">
<LINK REL="up" HREF="node37.html">
<LINK REL="next" HREF="node60.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4974"
 HREF="node60.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4968"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4964"
 HREF="node58.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4970"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4972"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4975"
 HREF="node60.html">Performance of LAPACK</A>
<B> Up:</B> <A NAME="tex2html4969"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4965"
 HREF="node58.html">Deflating Subspaces and Condition</A>
 &nbsp <B>  <A NAME="tex2html4971"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4973"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03249000000000000000"></A><A NAME="sectionGSVDcomputational"></A>
<BR>
Generalized (or Quotient) Singular Value Decomposition
</H2>

<P>
<A NAME="3858"></A><A NAME="3859"></A>
<A NAME="3860"></A>
<A NAME="3861"></A>
The <B>generalized (or quotient) singular value decomposition</B>
of an <B><I>m</I></B>-by-<B><I>n</I></B> matrix <B><I>A</I></B> and a <B><I>p</I></B>-by-<B><I>n</I></B> matrix <B><I>B</I></B> is described
in section&nbsp;<A HREF="node33.html#subsecdrivegeig">2.3.5</A>.
The routines described in this section, are used
to compute the decomposition. The computation proceeds in the following
two stages:
<DL COMPACT>
<DT>1.
<DD>xGGSVP<A NAME="3865"></A><A NAME="3866"></A><A NAME="3867"></A><A NAME="3868"></A> is used to reduce the matrices <B><I>A</I></B> and <B><I>B</I></B> to triangular form:
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="373" HEIGHT="177" BORDER="0"
 SRC="img205.png"
 ALT="\begin{eqnarray*}
U^T_1 A Q_1 &amp; = &amp; \bordermatrix{ &amp; n-k-l &amp; k &amp; l \cr
\hfill k...
...-l &amp; k &amp; l \cr
\hfill l &amp; 0 &amp; 0 &amp; B_{13} \cr
p-l &amp; 0 &amp; 0 &amp; 0 }
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
where <B><I>A</I><SUB>12</SUB></B> and <B><I>B</I><SUB>13</SUB></B> are nonsingular upper triangular, and
<B><I>A</I><SUB>23</SUB></B> is upper triangular.
If <B><I>m</I>-<I>k</I>-<I>l</I> &lt; 0</B>, the bottom zero block of <B><I>U</I><SUB>1</SUB><SUP><I>T</I></SUP> <I>A Q</I><SUB>1</SUB></B> does not appear,
and <B><I>A</I><SUB>23</SUB></B> is upper trapezoidal.
<B><I>U</I><SUB>1</SUB></B>, <B><I>V</I><SUB>1</SUB></B> and <B><I>Q</I><SUB>1</SUB></B> are
orthogonal matrices (or unitary matrices if <B><I>A</I></B> and <B><I>B</I></B> are complex).
<B><I>l</I></B> is the rank of <B><I>B</I></B>, and
<B><I>k</I>+<I>l</I></B> is the rank of 
<!-- MATH
 $\left( \begin{array}{c}  A  \\B \end{array} \right)$
 -->
<IMG
 WIDTH="60" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
 SRC="img19.png"
 ALT="$ \left( \begin{array}{c}
A \\
B
\end{array} \right) $">.
<P>
<DT>2.
<DD>The generalized singular value decomposition of two <B><I>l</I></B>-by-<B><I>l</I></B>
upper triangular matrices <B><I>A</I><SUB>23</SUB></B> and <B><I>B</I><SUB>13</SUB></B> is computed using
xTGSJA<A NAME="tex2html1653"
 HREF="footnode.html#foot3940"><SUP>2.2</SUP></A>:
<A NAME="3883"></A><A NAME="3884"></A><A NAME="3885"></A><A NAME="3886"></A>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A_{23} =  U_2 C R Q^T_2  \quad  \mbox{and} \quad
 B_{13} =  V_2 S R Q^T_2  \; \; .
\end{displaymath}
 -->


<IMG
 WIDTH="316" HEIGHT="31" BORDER="0"
 SRC="img206.png"
 ALT="\begin{displaymath}
A_{23} = U_2 C R Q^T_2 \quad \mbox{and} \quad
B_{13} = V_2 S R Q^T_2 \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Here <B><I>U</I><SUB>2</SUB></B>, <B><I>V</I><SUB>2</SUB></B> and <B><I>Q</I><SUB>2</SUB></B> are orthogonal (or unitary) matrices,
<B><I>C</I></B> and <B><I>S</I></B> are both real
nonnegative diagonal matrices satisfying <B><I>C</I><SUP>2</SUP> + <I>S</I><SUP>2</SUP> = <I>I</I></B>, <B><I>S</I></B> is nonsingular,
and <B><I>R</I></B> is upper triangular and nonsingular.
</DL>

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabcompGSVD"></A>
<DIV ALIGN="CENTER">
<A NAME="3892"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 2.16:</STRONG>
Computational routines for the generalized singular value decomposition</CAPTION>
<TR><TD ALIGN="LEFT">Operation</TD>
<TD ALIGN="CENTER" COLSPAN=2>Single precision</TD>
<TD ALIGN="CENTER" COLSPAN=2>Double precision</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
<TD ALIGN="LEFT">real</TD>
<TD ALIGN="LEFT">complex</TD>
</TR>
<TR><TD ALIGN="LEFT">triangular reduction of <B><I>A</I></B> and <B><I>B</I></B></TD>
<TD ALIGN="LEFT">SGGSVP<A NAME="3904"></A></TD>
<TD ALIGN="LEFT">CGGSVP<A NAME="3905"></A></TD>
<TD ALIGN="LEFT">DGGSVP<A NAME="3906"></A></TD>
<TD ALIGN="LEFT">ZGGSVP<A NAME="3907"></A></TD>
</TR>
<TR><TD ALIGN="LEFT">GSVD of a pair of triangular matrices</TD>
<TD ALIGN="LEFT">STGSJA<A NAME="3908"></A></TD>
<TD ALIGN="LEFT">CTGSJA<A NAME="3909"></A></TD>
<TD ALIGN="LEFT">DTGSJA<A NAME="3910"></A></TD>
<TD ALIGN="LEFT">ZTGSJA<A NAME="3911"></A></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
The reduction to triangular form, performed by
xGGSVP, uses QR decomposition with column pivoting
<A NAME="3915"></A>
for numerical rank determination.  See [<A
 HREF="node151.html#baizha93">8</A>] for details.
<A NAME="3917"></A>

<P>
The generalized singular value decomposition of two
triangular matrices, performed by xTGSJA, is done
using a Jacobi-like method as described in [<A
 HREF="node151.html#paige86a">83</A>,<A
 HREF="node151.html#baidemmel92b">10</A>].

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4974"
 HREF="node60.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html4968"
 HREF="node37.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html4964"
 HREF="node58.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html4970"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html4972"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html4975"
 HREF="node60.html">Performance of LAPACK</A>
<B> Up:</B> <A NAME="tex2html4969"
 HREF="node37.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html4965"
 HREF="node58.html">Deflating Subspaces and Condition</A>
 &nbsp <B>  <A NAME="tex2html4971"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html4973"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>