File: node69.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (273 lines) | stat: -rw-r--r-- 7,693 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>QR Factorization</TITLE>
<META NAME="description" CONTENT="QR Factorization">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node70.html">
<LINK REL="previous" HREF="node68.html">
<LINK REL="up" HREF="node67.html">
<LINK REL="next" HREF="node70.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5129"
 HREF="node70.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5123"
 HREF="node67.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5117"
 HREF="node68.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5125"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5127"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5130"
 HREF="node70.html">Eigenvalue Problems</A>
<B> Up:</B> <A NAME="tex2html5124"
 HREF="node67.html">Examples of Block Algorithms</A>
<B> Previous:</B> <A NAME="tex2html5118"
 HREF="node68.html">Factorizations for Solving Linear</A>
 &nbsp <B>  <A NAME="tex2html5126"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5128"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03342000000000000000"></A><A NAME="subsecblockqr"></A>
<BR>
<B><I>QR</I></B> Factorization
</H2>

<P>
The traditional algorithm for <B><I>QR</I></B>
factorization<A NAME="7857"></A>  is based on the use of
elementary Householder<A NAME="7858"></A>
matrices of the general form
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
H = I - \tau v v^T
\end{displaymath}
 -->


<IMG
 WIDTH="107" HEIGHT="28" BORDER="0"
 SRC="img219.png"
 ALT="\begin{displaymath}
H = I - \tau v v^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>v</I></B> is a column vector and <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img220.png"
 ALT="$\tau$">
is a scalar.
This leads to an algorithm with very good vector performance, especially
if coded to use Level 2 BLAS.

<P>
The key to developing a block form of this algorithm is to represent a
product
of <B><I>b</I></B> elementary Householder matrices of order <B><I>n</I></B> as a block
form of a Householder matrix<A NAME="7859"></A>. This can be done in
various ways.
LAPACK uses the following form&nbsp;[<A
 HREF="node151.html#Schreiber87a">90</A>]:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
H_1 H_2 \ldots H_b = I - V T V^T
\end{displaymath}
 -->


<IMG
 WIDTH="196" HEIGHT="30" BORDER="0"
 SRC="img221.png"
 ALT="\begin{displaymath}
H_1 H_2 \ldots H_b = I - V T V^T
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>V</I></B> is an <B><I>n</I></B>-by-<B><I>b</I></B> matrix whose columns are the individual vectors

<!-- MATH
 $v_1, v_2, \ldots , v_b$
 -->
<IMG
 WIDTH="98" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img222.png"
 ALT="$v_1, v_2, \ldots , v_b$">
associated with the Householder matrices 
<!-- MATH
 $H_1, H_2,
\ldots , H_b$
 -->
<IMG
 WIDTH="116" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img223.png"
 ALT="$H_1, H_2,
\ldots , H_b$">,
and <B><I>T</I></B> is an upper triangular matrix of order <B><I>b</I></B>.
Extra work is required to compute the elements of <B><I>T</I></B>, but once again this
is compensated for by the greater speed of applying the block form.
Table&nbsp;<A HREF="node69.html#tabqr">3.10</A>
summarizes results obtained with the LAPACK routine DGEQRF<A NAME="7862"></A>.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabqr"></A>
<DIV ALIGN="CENTER">
<A NAME="7864"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 3.10:</STRONG>
Speed in megaflops of DGEQRF for square matrices of order <B><I>n</I></B></CAPTION>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">No. of</TD>
<TD ALIGN="CENTER">Block</TD>
<TD ALIGN="CENTER" COLSPAN=2>Values of <B><I>n</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">processors</TD>
<TD ALIGN="CENTER">size</TD>
<TD ALIGN="RIGHT">100</TD>
<TD ALIGN="RIGHT">1000</TD>
</TR>
<TR><TD ALIGN="LEFT">Dec Alpha Miata</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">28</TD>
<TD ALIGN="RIGHT">141</TD>
<TD ALIGN="RIGHT">363</TD>
</TR>
<TR><TD ALIGN="LEFT">Compaq AlphaServer DS-20</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">28</TD>
<TD ALIGN="RIGHT">326</TD>
<TD ALIGN="RIGHT">444</TD>
</TR>
<TR><TD ALIGN="LEFT">IBM Power 3</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">244</TD>
<TD ALIGN="RIGHT">559</TD>
</TR>
<TR><TD ALIGN="LEFT">IBM PowerPC</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">52</TD>
<TD ALIGN="RIGHT">45</TD>
<TD ALIGN="RIGHT">127</TD>
</TR>
<TR><TD ALIGN="LEFT">Intel Pentium II</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">40</TD>
<TD ALIGN="RIGHT">113</TD>
<TD ALIGN="RIGHT">250</TD>
</TR>
<TR><TD ALIGN="LEFT">Intel Pentium III</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">40</TD>
<TD ALIGN="RIGHT">135</TD>
<TD ALIGN="RIGHT">297</TD>
</TR>
<TR><TD ALIGN="LEFT">SGI Origin 2000</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">64</TD>
<TD ALIGN="RIGHT">173</TD>
<TD ALIGN="RIGHT">451</TD>
</TR>
<TR><TD ALIGN="LEFT">SGI Origin 2000</TD>
<TD ALIGN="CENTER">4</TD>
<TD ALIGN="CENTER">64</TD>
<TD ALIGN="RIGHT">55</TD>
<TD ALIGN="RIGHT">766</TD>
</TR>
<TR><TD ALIGN="LEFT">Sun Ultra 2</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">64</TD>
<TD ALIGN="RIGHT">20</TD>
<TD ALIGN="RIGHT">230</TD>
</TR>
<TR><TD ALIGN="LEFT">Sun Enterprise 450</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">64</TD>
<TD ALIGN="RIGHT">48</TD>
<TD ALIGN="RIGHT">329</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5129"
 HREF="node70.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5123"
 HREF="node67.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5117"
 HREF="node68.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5125"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5127"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5130"
 HREF="node70.html">Eigenvalue Problems</A>
<B> Up:</B> <A NAME="tex2html5124"
 HREF="node67.html">Examples of Block Algorithms</A>
<B> Previous:</B> <A NAME="tex2html5118"
 HREF="node68.html">Factorizations for Solving Linear</A>
 &nbsp <B>  <A NAME="tex2html5126"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5128"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>