File: node70.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (772 lines) | stat: -rw-r--r-- 24,396 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Eigenvalue Problems</TITLE>
<META NAME="description" CONTENT="Eigenvalue Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node69.html">
<LINK REL="up" HREF="node67.html">
<LINK REL="next" HREF="node71.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5141"
 HREF="node71.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5135"
 HREF="node67.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5131"
 HREF="node69.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5137"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5139"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5142"
 HREF="node71.html">LAPACK Benchmark</A>
<B> Up:</B> <A NAME="tex2html5136"
 HREF="node67.html">Examples of Block Algorithms</A>
<B> Previous:</B> <A NAME="tex2html5132"
 HREF="node69.html">QR Factorization</A>
 &nbsp <B>  <A NAME="tex2html5138"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5140"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03343000000000000000"></A><A NAME="subsecblockeig"></A>
<BR>
Eigenvalue Problems
</H2>

<P>
Eigenvalue<A NAME="7878"></A> problems have also
provided a fertile ground for the development of higher performance
algorithms. These algorithms generally all consist of three phases:
(1) reduction of the original dense matrix to a condensed form
by orthogonal transformations,
(2) solution of condensed form, and
(3) optional backtransformation of the solution of the condensed form
to the solution of the original matrix.
In addition to block versions of algorithms for phases 1 and 3,
a number of entirely new algorithms for phase 2 have recently
been discovered.
In particular,
Version&nbsp;3.0 of LAPACK includes new block algorithms for the singular
value decomposition (SVD) and SVD-based least squares solver,
as well as a prototype of a new algorithm
xSTEGR[<A
 HREF="node151.html#holygrail">35</A>,<A
 HREF="node151.html#parlettmarques99">87</A>,<A
 HREF="node151.html#parlettdhillon99a">86</A>,<A
 HREF="node151.html#dhillonparlett99b">36</A>],
<A NAME="7880"></A><A NAME="7881"></A><A NAME="7882"></A><A NAME="7883"></A>
which may be the ultimate solution for the symmetric eigenproblem
and SVD on both parallel and serial machines.

<P>
The first step in solving many types of eigenvalue problems is to reduce
the original matrix to a condensed form by orthogonal
transformations<A NAME="7884"></A>.
<A NAME="7885"></A>
In the reduction to condensed forms, the unblocked algorithms all use
elementary
Householder matrices and have good vector performance.
Block forms of these algorithms have been developed [<A
 HREF="node151.html#lapwn2">46</A>],
but all require additional operations, and a significant proportion of the
work
must still be performed by Level 2 BLAS, so there is less possibility of
compensating for the extra operations.

<P>
The algorithms concerned are:

<P>

<UL><LI>reduction of a symmetric matrix to tridiagonal form<A NAME="7888"></A> to solve a
symmetric eigenvalue problem: LAPACK routine xSYTRD
<A NAME="7889"></A><A NAME="7890"></A><A NAME="7891"></A><A NAME="7892"></A>
applies a symmetric block
update of the form
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A \leftarrow A - U X^T - X U^T
\end{displaymath}
 -->


<IMG
 WIDTH="176" HEIGHT="28" BORDER="0"
 SRC="img224.png"
 ALT="\begin{displaymath}A \leftarrow A - U X^T - X U^T\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
using the Level 3
BLAS routine xSYR2K;
Level 3 BLAS account for at most half the work.

<P>

<LI>reduction of a rectangular matrix to bidiagonal form<A NAME="7893"></A> to compute
a singular value decomposition: LAPACK routine xGEBRD
<A NAME="7894"></A><A NAME="7895"></A><A NAME="7896"></A><A NAME="7897"></A>
applies a block update
of the form
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A \leftarrow A - U X^T - Y V^T
\end{displaymath}
 -->


<IMG
 WIDTH="174" HEIGHT="28" BORDER="0"
 SRC="img225.png"
 ALT="\begin{displaymath}A \leftarrow A - U X^T - Y V^T\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
using two calls to the
Level 3 BLAS routine xGEMM; Level 3 BLAS account for at most half the
work.

<P>

<LI>reduction of a nonsymmetric matrix to Hessenberg form<A NAME="7898"></A><A NAME="7899"></A> to solve a
nonsymmetric eigenvalue problem: LAPACK routine xGEHRD
<A NAME="7900"></A><A NAME="7901"></A><A NAME="7902"></A><A NAME="7903"></A>
applies a block update
of the form
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
A \leftarrow (I - V T^T V^T)(A - X V^T).
\end{displaymath}
 -->


<IMG
 WIDTH="238" HEIGHT="31" BORDER="0"
 SRC="img226.png"
 ALT="\begin{displaymath}A \leftarrow (I - V T^T V^T)(A - X V^T).\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Level 3 BLAS
account for at most three-quarters of the work.

<P>

</UL>

<P>
Note that only in the reduction to Hessenberg form<A NAME="7905"></A> is it possible to
use the block Householder representation described in
subsection&nbsp;<A HREF="node69.html#subsecblockqr">3.4.2</A>.
Extra work must be performed to compute the <B><I>n</I></B>-by-<B><I>b</I></B> matrices <B><I>X</I></B> and <B><I>Y</I></B>
that are required for the block updates (<B><I>b</I></B> is the block size)
-- and extra workspace is needed to
store them.

<P>
Nevertheless, the performance gains can be worthwhile on some machines
for large enough matrices,
for example, on an IBM Power&nbsp;3, as shown in Table&nbsp;<A HREF="node70.html#tabred">3.11</A>.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabred"></A>
<DIV ALIGN="CENTER">
</DIV>
<P>
<DIV ALIGN="CENTER">(all matrices are square of order <B><I>n</I></B>)
</DIV>
<P>
<DIV ALIGN="CENTER">
<BR>
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="7909"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 3.11:</STRONG>
Speed in megaflops of reductions to condensed forms on an
IBM Power&nbsp;3</CAPTION>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">Block</TD>
<TD ALIGN="CENTER" COLSPAN=2>Values of <B><I>n</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">size</TD>
<TD ALIGN="RIGHT">100</TD>
<TD ALIGN="RIGHT">1000</TD>
</TR>
<TR><TD ALIGN="LEFT">DSYTRD<A NAME="7919"></A></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="RIGHT">356</TD>
<TD ALIGN="RIGHT">418</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">192</TD>
<TD ALIGN="RIGHT">499</TD>
</TR>
<TR><TD ALIGN="LEFT">DGEBRD<A NAME="7920"></A></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="RIGHT">269</TD>
<TD ALIGN="RIGHT">241</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">179</TD>
<TD ALIGN="RIGHT">342</TD>
</TR>
<TR><TD ALIGN="LEFT">DGEHRD<A NAME="7921"></A></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="RIGHT">277</TD>
<TD ALIGN="RIGHT">250</TD>
</TR>
<TR><TD ALIGN="LEFT">&nbsp;</TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">277</TD>
<TD ALIGN="RIGHT">471</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
Following the reduction of a dense (or band) symmetric matrix to tridiagonal
form <B><I>T</I></B>,
we must compute the eigenvalues and (optionally) eigenvectors of <B><I>T</I></B>.
Computing the eigenvalues of <B><I>T</I></B> alone (using LAPACK routine
xSTERF<A NAME="7925"></A><A NAME="7926"></A>) requires
<B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> flops, whereas the reduction routine
xSYTRD<A NAME="7927"></A><A NAME="7928"></A> does 
<!-- MATH
 $\frac{4}{3}n^3 + O(n^2)$
 -->
<IMG
 WIDTH="100" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img227.png"
 ALT="$\frac{4}{3}n^3 + O(n^2)$">
flops. So eventually the cost of finding eigenvalues
alone becomes small compared to the cost of reduction. However, xSTERF
does only scalar floating point operations, without scope for the BLAS,
so <B><I>n</I></B> may have to be large before xSYTRD is slower than xSTERF.

<P>
Version 2.0 of LAPACK introduced a new algorithm,
xSTEDC<A NAME="7931"></A><A NAME="7932"></A><A NAME="7933"></A><A NAME="7934"></A>,
for finding all eigenvalues and
eigenvectors of <B><I>T</I></B>. The new algorithm can exploit Level 2 and 3 BLAS,
whereas
the previous algorithm,
xSTEQR<A NAME="7935"></A><A NAME="7936"></A><A NAME="7937"></A><A NAME="7938"></A>,
could not. Furthermore, xSTEDC usually does
many
fewer flops than xSTEQR, so the speedup is compounded. Briefly, xSTEDC works
as follows
(for details, see [<A
 HREF="node151.html#gueisenstat">57</A>,<A
 HREF="node151.html#rutter">89</A>]). The tridiagonal matrix <B><I>T</I></B> is
written as
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
T = \left( \begin{array}{cc} T_1 & 0 \\0 & T_2 \end{array} \right) + H
\end{displaymath}
 -->


<IMG
 WIDTH="165" HEIGHT="54" BORDER="0"
 SRC="img228.png"
 ALT="\begin{displaymath}
T = \left( \begin{array}{cc} T_1 &amp; 0 \\ 0 &amp; T_2 \end{array} \right) + H
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>T</I><SUB>1</SUB></B> and <B><I>T</I><SUB>2</SUB></B> are tridiagonal, and <B><I>H</I></B> is a very simple rank-one
matrix.
Then the eigenvalues and eigenvectors of <B><I>T</I><SUB>1</SUB></B> and <B><I>T</I><SUB>2</SUB></B> are found by
applying
the algorithm recursively; this yields 
<!-- MATH
 $T_1 = Q_1 \Lambda_1 Q_1^T$
 -->
<IMG
 WIDTH="111" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img229.png"
 ALT="$T_1 = Q_1 \Lambda_1 Q_1^T$">
and

<!-- MATH
 $T_2 = Q_2 \Lambda_2 Q_2^T$
 -->
<IMG
 WIDTH="111" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img230.png"
 ALT="$T_2 = Q_2 \Lambda_2 Q_2^T$">,
where <IMG
 WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img231.png"
 ALT="$\Lambda_i$">
is a diagonal matrix of
eigenvalues,
and the columns of <B><I>Q</I><SUB><I>i</I></SUB></B> are orthonormal eigenvectors. Thus
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
T = \left( \begin{array}{cc} Q_1 \Lambda_1 Q_1^T & 0 \\0 &  Q_2 \Lambda_2 Q_2^T \end{array} \right) + H
=
\left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) \cdot
\left( \left( \begin{array}{cc} \Lambda_1 & 0 \\0 & \Lambda_2 \end{array} \right) + H' \right) \cdot
\left( \begin{array}{cc} Q_1^T & 0 \\0 & Q_2^T \end{array} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="650" HEIGHT="54" BORDER="0"
 SRC="img232.png"
 ALT="\begin{displaymath}
T = \left( \begin{array}{cc} Q_1 \Lambda_1 Q_1^T &amp; 0 \\ 0 &amp; ...
... \begin{array}{cc} Q_1^T &amp; 0 \\ 0 &amp; Q_2^T \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>H</I>'</B> is again a simple rank-one matrix. The eigenvalues and
eigenvectors
of 
<!-- MATH
 $\left( \begin{array}{cc} \Lambda_1 & 0 \\0 & \Lambda_2 \end{array} \right) + H'$
 -->
<IMG
 WIDTH="142" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
 SRC="img233.png"
 ALT="$\left( \begin{array}{cc} \Lambda_1 &amp; 0 \\ 0 &amp; \Lambda_2 \end{array} \right) + H'$">
may be found
using <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> scalar operations, yielding

<!-- MATH
 $\left( \begin{array}{cc} \Lambda_1 & 0 \\0 & \Lambda_2 \end{array} \right) + H' =
\hat{Q} \Lambda \hat{Q}^T \; .$
 -->
<IMG
 WIDTH="226" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
 SRC="img234.png"
 ALT="$
\left( \begin{array}{cc} \Lambda_1 &amp; 0 \\ 0 &amp; \Lambda_2 \end{array} \right) + H' =
\hat{Q} \Lambda \hat{Q}^T \; .
$">
Substituting this into the last displayed expression yields
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
T =
\left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) 
\left( \hat{Q} {\Lambda} \hat{Q}^T \right) \left( \begin{array}{cc} Q_1^T & 0 \\0 & Q_2^T
\end{array} \right) =
\left( \left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) \hat{Q} \right)
{\Lambda}
\left( \hat{Q}^T \left( \begin{array}{cc} Q_1^T & 0 \\0 & Q_2^T \end{array} \right) \right) =
Q \Lambda Q^T \; ,
\end{displaymath}
 -->


<IMG
 WIDTH="739" HEIGHT="54" BORDER="0"
 SRC="img235.png"
 ALT="\begin{displaymath}
T =
\left( \begin{array}{cc} Q_1 &amp; 0 \\ 0 &amp; Q_2 \end{array} ...
... \\ 0 &amp; Q_2^T \end{array} \right) \right) =
Q \Lambda Q^T \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where the diagonals of <IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img28.png"
 ALT="$\Lambda$">
are the desired eigenvalues of <B><I>T</I></B>, and the
columns
of 
<!-- MATH
 $Q = \left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) \hat{Q}$
 -->
<IMG
 WIDTH="158" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
 SRC="img236.png"
 ALT="$Q = \left( \begin{array}{cc} Q_1 &amp; 0 \\ 0 &amp; Q_2 \end{array} \right) \hat{Q}$">
are the eigenvectors.
Almost all the work is done in the two matrix multiplies of <B><I>Q</I><SUB>1</SUB></B> and <B><I>Q</I><SUB>2</SUB></B>
times
<IMG
 WIDTH="18" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img237.png"
 ALT="$\hat{Q}$">,
which is done using the Level 3 BLAS.

<P>
The same recursive algorithm has been developed for the singular value
decomposition
of the bidiagonal matrix resulting from reducing a dense matrix with
xGEBRD.
<A NAME="7962"></A><A NAME="7963"></A><A NAME="7964"></A><A NAME="7965"></A>
The SVD driver using this algorithm is called xGESDD.
<A NAME="7966"></A><A NAME="7967"></A><A NAME="7968"></A><A NAME="7969"></A>
This recursive algorithm is also used for the SVD-based linear least
squares solver xGELSD;
<A NAME="7970"></A><A NAME="7971"></A><A NAME="7972"></A><A NAME="7973"></A>
see Figure&nbsp;<A HREF="node71.html#fig:GELScomparison">3.3</A> to see how
much faster DGELSD is than its older routine DGELSS.
SBDSQR<A NAME="7975"></A><A NAME="7976"></A><A NAME="7977"></A><A NAME="7978"></A>,
Comparison timings of DGESVD<A NAME="7979"></A> and DGESDD<A NAME="7980"></A> can
be found in
Tables&nbsp;<A HREF="node71.html#tabsvddriver2">3.18</A> and <A HREF="node71.html#tabsvddriver4">3.19</A>.

<P>
Version 3.0 of LAPACK introduced another new algorithm, xSTEGR,
<A NAME="7983"></A><A NAME="7984"></A><A NAME="7985"></A><A NAME="7986"></A>
for finding all the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix.
It is usually even faster
than xSTEDC
<A NAME="7987"></A><A NAME="7988"></A><A NAME="7989"></A><A NAME="7990"></A>
above, and we expect it to ultimately replace all
other LAPACK algorithm for the symmetric eigenvalue problem
and SVD. Here is a rough description of how it works; for
details see
[<A
 HREF="node151.html#holygrail">35</A>,<A
 HREF="node151.html#parlettmarques99">87</A>,<A
 HREF="node151.html#parlettdhillon99a">86</A>,<A
 HREF="node151.html#dhillonparlett99b">36</A>].

<P>
It is easiest to think of xSTEGR as a variation on xSTEIN,
<A NAME="7992"></A><A NAME="7993"></A><A NAME="7994"></A><A NAME="7995"></A>
inverse iteration.
If all the eigenvalues were well separated, xSTEIN would
run in <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> time.
But it is difficult for xSTEIN to compute accurate eigenvectors
belonging to close eigenvalues, those that have four or
more decimals in common with their neighbors. Indeed, xSTEIN
slows down because it reorthogonalizes the corresponding eigenvectors.
xSTEGR escapes this difficulty by exploiting the invariance of
eigenvectors under translation.

<P>
For each cluster <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img238.png"
 ALT="$\cal C$">
of close eigenvalues the algorithm chooses
a shift <B><I>s</I></B> at one end of <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img238.png"
 ALT="$\cal C$">,
or just outside, with the property
that <B><I>T</I> - <I>sI</I></B> permits triangular factorization 
<!-- MATH
 $LDL^T = T - sI$
 -->
<B><I>LDL</I><SUP><I>T</I></SUP> = <I>T</I> - <I>sI</I></B>
such that the small shifted eigenvalues
(<IMG
 WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img239.png"
 ALT="$\lambda - s$">
for 
<!-- MATH
 $\lambda \in {\cal C}$
 -->
<IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img240.png"
 ALT="$\lambda \in {\cal C}$">)
are determined to high relative accuracy by the
entries in <B><I>L</I></B> and <B><I>D</I></B>.  Note that the small shifted eigenvalues
will have fewer digits in common than those in <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img238.png"
 ALT="$\cal C$">.
The algorithm
computes these small shifted eigenvalues to high relative
accuracy, either by xLASQ2
or by refining earlier approximations
using bisection.  This means that each computed <IMG
 WIDTH="15" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img241.png"
 ALT="$\hat{\lambda}$">
approximating a <IMG
 WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img239.png"
 ALT="$\lambda - s$">
has error bounded by 
<!-- MATH
 $O( \varepsilon )
|\hat{\lambda}|$
 -->
<IMG
 WIDTH="60" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img242.png"
 ALT="$O( \varepsilon )
\vert\hat{\lambda}\vert$">.

<P>
The next task is to compute an eigenvector for <IMG
 WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img239.png"
 ALT="$\lambda - s$">.
For each
<IMG
 WIDTH="15" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img241.png"
 ALT="$\hat{\lambda}$">
the algorithm computes, with care, an optimal
<EM>twisted factorization</EM>
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="264" HEIGHT="58" BORDER="0"
 SRC="img243.png"
 ALT="\begin{eqnarray*}
LDL^T - \hat{\lambda} I &amp;=&amp; N_r \Delta_r N_r^T \\
\Delta_r &amp;=&amp; {\rm diag}(\delta_1,\delta_2, ...
,\delta_n)
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
obtained by implementing triangular factorization both from top
down and bottom up and joining them at a well chosen index <B><I>r</I></B>.
An approximate eigenvector <B><I>z</I></B> is obtained by solving <B><I>N</I><SUB><I>r</I></SUB><SUP><I>T</I></SUP> <I>z</I> = <I>e</I><SUB><I>r</I></SUB></B>
where <B><I>e</I><SUB><I>r</I></SUB></B> is column <B><I>r</I></B> of <B><I>I</I></B>.  It turns out that

<!-- MATH
 $N_r \Delta_r N_r^T = e_r \delta_r$
 -->
<IMG
 WIDTH="128" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img244.png"
 ALT="$N_r \Delta_r N_r^T = e_r \delta_r$">
and
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\| LDL^T - \hat{\lambda} I \| =
     | {\rm error\ in\ } \hat{\lambda}| / \|u\|_{\infty} + ...
\end{displaymath}
 -->


<IMG
 WIDTH="297" HEIGHT="31" BORDER="0"
 SRC="img245.png"
 ALT="\begin{displaymath}
\Vert LDL^T - \hat{\lambda} I \Vert =
\vert {\rm error\ in\ } \hat{\lambda}\vert / \Vert u\Vert _{\infty} + ...
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where ... indicates smaller terms and 
<!-- MATH
 $Tu = \lambda u$
 -->
<IMG
 WIDTH="70" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img246.png"
 ALT="$Tu = \lambda u$">,
<B><I>u</I><SUP><I>T</I></SUP><I>u</I> = 1</B>.
&gt;From the basic gap theorem [<A
 HREF="node151.html#parlett">85</A>]
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
|\sin \theta(u,z)| <= O(\epsilon)
) |\hat{\lambda}| / (\|u\|_{\infty}
|\hat{\lambda} - \hat{\mu}| ) + ...
\end{displaymath}
 -->


<IMG
 WIDTH="333" HEIGHT="31" BORDER="0"
 SRC="img247.png"
 ALT="\begin{displaymath}
\vert\sin \theta(u,z)\vert &lt;= O(\epsilon)
) \vert\hat{\lamb...
...t u\Vert _{\infty}
\vert\hat{\lambda} - \hat{\mu}\vert ) + ...
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
 WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img248.png"
 ALT="$\hat{\mu}$">
is <IMG
 WIDTH="15" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img241.png"
 ALT="$\hat{\lambda}$">'s neighbor in the shifted spectrum.
Given
this nice bound the algorithm computes <B><I>z</I></B> for all <IMG
 WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img23.png"
 ALT="$\lambda$">
such that the
relative gap 
<!-- MATH
 $|\lambda - \mu|/|\lambda - s| > 10^{-3}$
 -->
<IMG
 WIDTH="173" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img249.png"
 ALT="$\vert\lambda - \mu\vert/\vert\lambda - s\vert &gt; 10^{-3}$">.
These <B><I>z</I></B>'s have an
error
that is <IMG
 WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img250.png"
 ALT="$O(\epsilon)$">.

<P>
The procedure described above is repeated for any eigenvalues that
remain without eigenvectors.  It can be shown that all the computed
<B><I>z</I></B>'s are very close to eigenvectors of small relative perturbations of
one global Cholesky factorization <B><I>GG</I><SUP><I>T</I></SUP></B> of a translate <IMG
 WIDTH="58" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img251.png"
 ALT="$T - \sigma I$">
of <B><I>T</I></B>.  A key
component of the algorithm is the use of recently discovered
differential qd algorithms to ensure that the twisted factorizations
described above are computed without ever forming the indicated
matrix products such as <B><I>LDL</I><SUP><I>T</I></SUP></B> [<A
 HREF="node151.html#fernandoparlett">51</A>].

<P>
For computing the eigenvalues and eigenvectors of a Hessenberg
matrix--or rather for computing its Schur factorization-- yet another
flavor of block algorithm has been developed: a <B>multishift</B>
<B><I>QR</I></B> iteration<A NAME="8019"></A>
[<A
 HREF="node151.html#baidemmel">9</A>]. Whereas the traditional EISPACK routine
HQR<A NAME="8021"></A> uses a double shift (and the corresponding complex
routine COMQR<A NAME="8022"></A>
uses a single shift), the multishift algorithm uses block shifts of
higher order. It has been found that often the total number of operations
<EM>decreases</EM> as the order of shift is increased until a minimum
is reached typically between 4 and 8; for higher orders the number of
operations increases quite rapidly. On many machines
the speed of applying the shift
increases steadily with the order, and the optimum order of shift is
typically in the range 8-16. Note however that the performance can be
very sensitive to the choice of the order of shift; it also depends on
the numerical properties of the matrix. Dubrulle&nbsp;[<A
 HREF="node151.html#dubrulle">49</A>] has
studied the practical performance of the algorithm, while Watkins and
Elsner&nbsp;[<A
 HREF="node151.html#watkinselsner">101</A>] discuss its theoretical asymptotic convergence
rate.

<P>
Finally, we note that research into block algorithms for symmetric and
nonsymmetric eigenproblems continues
[<A
 HREF="node151.html#baidemmel92a">11</A>,<A
 HREF="node151.html#hussledermantsaozhang93">68</A>],
and future versions of LAPACK will be updated to contain the best algorithms
available.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5141"
 HREF="node71.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5135"
 HREF="node67.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5131"
 HREF="node69.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5137"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5139"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5142"
 HREF="node71.html">LAPACK Benchmark</A>
<B> Up:</B> <A NAME="tex2html5136"
 HREF="node67.html">Examples of Block Algorithms</A>
<B> Previous:</B> <A NAME="tex2html5132"
 HREF="node69.html">QR Factorization</A>
 &nbsp <B>  <A NAME="tex2html5138"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5140"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>