1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Eigenvalue Problems</TITLE>
<META NAME="description" CONTENT="Eigenvalue Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node69.html">
<LINK REL="up" HREF="node67.html">
<LINK REL="next" HREF="node71.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5141"
HREF="node71.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5135"
HREF="node67.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5131"
HREF="node69.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5137"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5139"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5142"
HREF="node71.html">LAPACK Benchmark</A>
<B> Up:</B> <A NAME="tex2html5136"
HREF="node67.html">Examples of Block Algorithms</A>
<B> Previous:</B> <A NAME="tex2html5132"
HREF="node69.html">QR Factorization</A>
  <B> <A NAME="tex2html5138"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5140"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03343000000000000000"></A><A NAME="subsecblockeig"></A>
<BR>
Eigenvalue Problems
</H2>
<P>
Eigenvalue<A NAME="7878"></A> problems have also
provided a fertile ground for the development of higher performance
algorithms. These algorithms generally all consist of three phases:
(1) reduction of the original dense matrix to a condensed form
by orthogonal transformations,
(2) solution of condensed form, and
(3) optional backtransformation of the solution of the condensed form
to the solution of the original matrix.
In addition to block versions of algorithms for phases 1 and 3,
a number of entirely new algorithms for phase 2 have recently
been discovered.
In particular,
Version 3.0 of LAPACK includes new block algorithms for the singular
value decomposition (SVD) and SVD-based least squares solver,
as well as a prototype of a new algorithm
xSTEGR[<A
HREF="node151.html#holygrail">35</A>,<A
HREF="node151.html#parlettmarques99">87</A>,<A
HREF="node151.html#parlettdhillon99a">86</A>,<A
HREF="node151.html#dhillonparlett99b">36</A>],
<A NAME="7880"></A><A NAME="7881"></A><A NAME="7882"></A><A NAME="7883"></A>
which may be the ultimate solution for the symmetric eigenproblem
and SVD on both parallel and serial machines.
<P>
The first step in solving many types of eigenvalue problems is to reduce
the original matrix to a condensed form by orthogonal
transformations<A NAME="7884"></A>.
<A NAME="7885"></A>
In the reduction to condensed forms, the unblocked algorithms all use
elementary
Householder matrices and have good vector performance.
Block forms of these algorithms have been developed [<A
HREF="node151.html#lapwn2">46</A>],
but all require additional operations, and a significant proportion of the
work
must still be performed by Level 2 BLAS, so there is less possibility of
compensating for the extra operations.
<P>
The algorithms concerned are:
<P>
<UL><LI>reduction of a symmetric matrix to tridiagonal form<A NAME="7888"></A> to solve a
symmetric eigenvalue problem: LAPACK routine xSYTRD
<A NAME="7889"></A><A NAME="7890"></A><A NAME="7891"></A><A NAME="7892"></A>
applies a symmetric block
update of the form
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A \leftarrow A - U X^T - X U^T
\end{displaymath}
-->
<IMG
WIDTH="176" HEIGHT="28" BORDER="0"
SRC="img224.png"
ALT="\begin{displaymath}A \leftarrow A - U X^T - X U^T\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
using the Level 3
BLAS routine xSYR2K;
Level 3 BLAS account for at most half the work.
<P>
<LI>reduction of a rectangular matrix to bidiagonal form<A NAME="7893"></A> to compute
a singular value decomposition: LAPACK routine xGEBRD
<A NAME="7894"></A><A NAME="7895"></A><A NAME="7896"></A><A NAME="7897"></A>
applies a block update
of the form
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A \leftarrow A - U X^T - Y V^T
\end{displaymath}
-->
<IMG
WIDTH="174" HEIGHT="28" BORDER="0"
SRC="img225.png"
ALT="\begin{displaymath}A \leftarrow A - U X^T - Y V^T\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
using two calls to the
Level 3 BLAS routine xGEMM; Level 3 BLAS account for at most half the
work.
<P>
<LI>reduction of a nonsymmetric matrix to Hessenberg form<A NAME="7898"></A><A NAME="7899"></A> to solve a
nonsymmetric eigenvalue problem: LAPACK routine xGEHRD
<A NAME="7900"></A><A NAME="7901"></A><A NAME="7902"></A><A NAME="7903"></A>
applies a block update
of the form
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A \leftarrow (I - V T^T V^T)(A - X V^T).
\end{displaymath}
-->
<IMG
WIDTH="238" HEIGHT="31" BORDER="0"
SRC="img226.png"
ALT="\begin{displaymath}A \leftarrow (I - V T^T V^T)(A - X V^T).\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Level 3 BLAS
account for at most three-quarters of the work.
<P>
</UL>
<P>
Note that only in the reduction to Hessenberg form<A NAME="7905"></A> is it possible to
use the block Householder representation described in
subsection <A HREF="node69.html#subsecblockqr">3.4.2</A>.
Extra work must be performed to compute the <B><I>n</I></B>-by-<B><I>b</I></B> matrices <B><I>X</I></B> and <B><I>Y</I></B>
that are required for the block updates (<B><I>b</I></B> is the block size)
-- and extra workspace is needed to
store them.
<P>
Nevertheless, the performance gains can be worthwhile on some machines
for large enough matrices,
for example, on an IBM Power 3, as shown in Table <A HREF="node70.html#tabred">3.11</A>.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tabred"></A>
<DIV ALIGN="CENTER">
</DIV>
<P>
<DIV ALIGN="CENTER">(all matrices are square of order <B><I>n</I></B>)
</DIV>
<P>
<DIV ALIGN="CENTER">
<BR>
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="7909"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 3.11:</STRONG>
Speed in megaflops of reductions to condensed forms on an
IBM Power 3</CAPTION>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">Block</TD>
<TD ALIGN="CENTER" COLSPAN=2>Values of <B><I>n</I></B></TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">size</TD>
<TD ALIGN="RIGHT">100</TD>
<TD ALIGN="RIGHT">1000</TD>
</TR>
<TR><TD ALIGN="LEFT">DSYTRD<A NAME="7919"></A></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="RIGHT">356</TD>
<TD ALIGN="RIGHT">418</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">192</TD>
<TD ALIGN="RIGHT">499</TD>
</TR>
<TR><TD ALIGN="LEFT">DGEBRD<A NAME="7920"></A></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="RIGHT">269</TD>
<TD ALIGN="RIGHT">241</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">179</TD>
<TD ALIGN="RIGHT">342</TD>
</TR>
<TR><TD ALIGN="LEFT">DGEHRD<A NAME="7921"></A></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="RIGHT">277</TD>
<TD ALIGN="RIGHT">250</TD>
</TR>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="CENTER">32</TD>
<TD ALIGN="RIGHT">277</TD>
<TD ALIGN="RIGHT">471</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
Following the reduction of a dense (or band) symmetric matrix to tridiagonal
form <B><I>T</I></B>,
we must compute the eigenvalues and (optionally) eigenvectors of <B><I>T</I></B>.
Computing the eigenvalues of <B><I>T</I></B> alone (using LAPACK routine
xSTERF<A NAME="7925"></A><A NAME="7926"></A>) requires
<B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> flops, whereas the reduction routine
xSYTRD<A NAME="7927"></A><A NAME="7928"></A> does
<!-- MATH
$\frac{4}{3}n^3 + O(n^2)$
-->
<IMG
WIDTH="100" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img227.png"
ALT="$\frac{4}{3}n^3 + O(n^2)$">
flops. So eventually the cost of finding eigenvalues
alone becomes small compared to the cost of reduction. However, xSTERF
does only scalar floating point operations, without scope for the BLAS,
so <B><I>n</I></B> may have to be large before xSYTRD is slower than xSTERF.
<P>
Version 2.0 of LAPACK introduced a new algorithm,
xSTEDC<A NAME="7931"></A><A NAME="7932"></A><A NAME="7933"></A><A NAME="7934"></A>,
for finding all eigenvalues and
eigenvectors of <B><I>T</I></B>. The new algorithm can exploit Level 2 and 3 BLAS,
whereas
the previous algorithm,
xSTEQR<A NAME="7935"></A><A NAME="7936"></A><A NAME="7937"></A><A NAME="7938"></A>,
could not. Furthermore, xSTEDC usually does
many
fewer flops than xSTEQR, so the speedup is compounded. Briefly, xSTEDC works
as follows
(for details, see [<A
HREF="node151.html#gueisenstat">57</A>,<A
HREF="node151.html#rutter">89</A>]). The tridiagonal matrix <B><I>T</I></B> is
written as
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
T = \left( \begin{array}{cc} T_1 & 0 \\0 & T_2 \end{array} \right) + H
\end{displaymath}
-->
<IMG
WIDTH="165" HEIGHT="54" BORDER="0"
SRC="img228.png"
ALT="\begin{displaymath}
T = \left( \begin{array}{cc} T_1 & 0 \\ 0 & T_2 \end{array} \right) + H
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>T</I><SUB>1</SUB></B> and <B><I>T</I><SUB>2</SUB></B> are tridiagonal, and <B><I>H</I></B> is a very simple rank-one
matrix.
Then the eigenvalues and eigenvectors of <B><I>T</I><SUB>1</SUB></B> and <B><I>T</I><SUB>2</SUB></B> are found by
applying
the algorithm recursively; this yields
<!-- MATH
$T_1 = Q_1 \Lambda_1 Q_1^T$
-->
<IMG
WIDTH="111" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img229.png"
ALT="$T_1 = Q_1 \Lambda_1 Q_1^T$">
and
<!-- MATH
$T_2 = Q_2 \Lambda_2 Q_2^T$
-->
<IMG
WIDTH="111" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img230.png"
ALT="$T_2 = Q_2 \Lambda_2 Q_2^T$">,
where <IMG
WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img231.png"
ALT="$\Lambda_i$">
is a diagonal matrix of
eigenvalues,
and the columns of <B><I>Q</I><SUB><I>i</I></SUB></B> are orthonormal eigenvectors. Thus
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
T = \left( \begin{array}{cc} Q_1 \Lambda_1 Q_1^T & 0 \\0 & Q_2 \Lambda_2 Q_2^T \end{array} \right) + H
=
\left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) \cdot
\left( \left( \begin{array}{cc} \Lambda_1 & 0 \\0 & \Lambda_2 \end{array} \right) + H' \right) \cdot
\left( \begin{array}{cc} Q_1^T & 0 \\0 & Q_2^T \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="650" HEIGHT="54" BORDER="0"
SRC="img232.png"
ALT="\begin{displaymath}
T = \left( \begin{array}{cc} Q_1 \Lambda_1 Q_1^T & 0 \\ 0 & ...
... \begin{array}{cc} Q_1^T & 0 \\ 0 & Q_2^T \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>H</I>'</B> is again a simple rank-one matrix. The eigenvalues and
eigenvectors
of
<!-- MATH
$\left( \begin{array}{cc} \Lambda_1 & 0 \\0 & \Lambda_2 \end{array} \right) + H'$
-->
<IMG
WIDTH="142" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img233.png"
ALT="$\left( \begin{array}{cc} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{array} \right) + H'$">
may be found
using <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> scalar operations, yielding
<!-- MATH
$\left( \begin{array}{cc} \Lambda_1 & 0 \\0 & \Lambda_2 \end{array} \right) + H' =
\hat{Q} \Lambda \hat{Q}^T \; .$
-->
<IMG
WIDTH="226" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img234.png"
ALT="$
\left( \begin{array}{cc} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{array} \right) + H' =
\hat{Q} \Lambda \hat{Q}^T \; .
$">
Substituting this into the last displayed expression yields
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
T =
\left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right)
\left( \hat{Q} {\Lambda} \hat{Q}^T \right) \left( \begin{array}{cc} Q_1^T & 0 \\0 & Q_2^T
\end{array} \right) =
\left( \left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) \hat{Q} \right)
{\Lambda}
\left( \hat{Q}^T \left( \begin{array}{cc} Q_1^T & 0 \\0 & Q_2^T \end{array} \right) \right) =
Q \Lambda Q^T \; ,
\end{displaymath}
-->
<IMG
WIDTH="739" HEIGHT="54" BORDER="0"
SRC="img235.png"
ALT="\begin{displaymath}
T =
\left( \begin{array}{cc} Q_1 & 0 \\ 0 & Q_2 \end{array} ...
... \\ 0 & Q_2^T \end{array} \right) \right) =
Q \Lambda Q^T \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where the diagonals of <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$\Lambda$">
are the desired eigenvalues of <B><I>T</I></B>, and the
columns
of
<!-- MATH
$Q = \left( \begin{array}{cc} Q_1 & 0 \\0 & Q_2 \end{array} \right) \hat{Q}$
-->
<IMG
WIDTH="158" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
SRC="img236.png"
ALT="$Q = \left( \begin{array}{cc} Q_1 & 0 \\ 0 & Q_2 \end{array} \right) \hat{Q}$">
are the eigenvectors.
Almost all the work is done in the two matrix multiplies of <B><I>Q</I><SUB>1</SUB></B> and <B><I>Q</I><SUB>2</SUB></B>
times
<IMG
WIDTH="18" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img237.png"
ALT="$\hat{Q}$">,
which is done using the Level 3 BLAS.
<P>
The same recursive algorithm has been developed for the singular value
decomposition
of the bidiagonal matrix resulting from reducing a dense matrix with
xGEBRD.
<A NAME="7962"></A><A NAME="7963"></A><A NAME="7964"></A><A NAME="7965"></A>
The SVD driver using this algorithm is called xGESDD.
<A NAME="7966"></A><A NAME="7967"></A><A NAME="7968"></A><A NAME="7969"></A>
This recursive algorithm is also used for the SVD-based linear least
squares solver xGELSD;
<A NAME="7970"></A><A NAME="7971"></A><A NAME="7972"></A><A NAME="7973"></A>
see Figure <A HREF="node71.html#fig:GELScomparison">3.3</A> to see how
much faster DGELSD is than its older routine DGELSS.
SBDSQR<A NAME="7975"></A><A NAME="7976"></A><A NAME="7977"></A><A NAME="7978"></A>,
Comparison timings of DGESVD<A NAME="7979"></A> and DGESDD<A NAME="7980"></A> can
be found in
Tables <A HREF="node71.html#tabsvddriver2">3.18</A> and <A HREF="node71.html#tabsvddriver4">3.19</A>.
<P>
Version 3.0 of LAPACK introduced another new algorithm, xSTEGR,
<A NAME="7983"></A><A NAME="7984"></A><A NAME="7985"></A><A NAME="7986"></A>
for finding all the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix.
It is usually even faster
than xSTEDC
<A NAME="7987"></A><A NAME="7988"></A><A NAME="7989"></A><A NAME="7990"></A>
above, and we expect it to ultimately replace all
other LAPACK algorithm for the symmetric eigenvalue problem
and SVD. Here is a rough description of how it works; for
details see
[<A
HREF="node151.html#holygrail">35</A>,<A
HREF="node151.html#parlettmarques99">87</A>,<A
HREF="node151.html#parlettdhillon99a">86</A>,<A
HREF="node151.html#dhillonparlett99b">36</A>].
<P>
It is easiest to think of xSTEGR as a variation on xSTEIN,
<A NAME="7992"></A><A NAME="7993"></A><A NAME="7994"></A><A NAME="7995"></A>
inverse iteration.
If all the eigenvalues were well separated, xSTEIN would
run in <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> time.
But it is difficult for xSTEIN to compute accurate eigenvectors
belonging to close eigenvalues, those that have four or
more decimals in common with their neighbors. Indeed, xSTEIN
slows down because it reorthogonalizes the corresponding eigenvectors.
xSTEGR escapes this difficulty by exploiting the invariance of
eigenvectors under translation.
<P>
For each cluster <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img238.png"
ALT="$\cal C$">
of close eigenvalues the algorithm chooses
a shift <B><I>s</I></B> at one end of <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img238.png"
ALT="$\cal C$">,
or just outside, with the property
that <B><I>T</I> - <I>sI</I></B> permits triangular factorization
<!-- MATH
$LDL^T = T - sI$
-->
<B><I>LDL</I><SUP><I>T</I></SUP> = <I>T</I> - <I>sI</I></B>
such that the small shifted eigenvalues
(<IMG
WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img239.png"
ALT="$\lambda - s$">
for
<!-- MATH
$\lambda \in {\cal C}$
-->
<IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img240.png"
ALT="$\lambda \in {\cal C}$">)
are determined to high relative accuracy by the
entries in <B><I>L</I></B> and <B><I>D</I></B>. Note that the small shifted eigenvalues
will have fewer digits in common than those in <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img238.png"
ALT="$\cal C$">.
The algorithm
computes these small shifted eigenvalues to high relative
accuracy, either by xLASQ2
or by refining earlier approximations
using bisection. This means that each computed <IMG
WIDTH="15" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img241.png"
ALT="$\hat{\lambda}$">
approximating a <IMG
WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img239.png"
ALT="$\lambda - s$">
has error bounded by
<!-- MATH
$O( \varepsilon )
|\hat{\lambda}|$
-->
<IMG
WIDTH="60" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img242.png"
ALT="$O( \varepsilon )
\vert\hat{\lambda}\vert$">.
<P>
The next task is to compute an eigenvector for <IMG
WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img239.png"
ALT="$\lambda - s$">.
For each
<IMG
WIDTH="15" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img241.png"
ALT="$\hat{\lambda}$">
the algorithm computes, with care, an optimal
<EM>twisted factorization</EM>
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="264" HEIGHT="58" BORDER="0"
SRC="img243.png"
ALT="\begin{eqnarray*}
LDL^T - \hat{\lambda} I &=& N_r \Delta_r N_r^T \\
\Delta_r &=& {\rm diag}(\delta_1,\delta_2, ...
,\delta_n)
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
obtained by implementing triangular factorization both from top
down and bottom up and joining them at a well chosen index <B><I>r</I></B>.
An approximate eigenvector <B><I>z</I></B> is obtained by solving <B><I>N</I><SUB><I>r</I></SUB><SUP><I>T</I></SUP> <I>z</I> = <I>e</I><SUB><I>r</I></SUB></B>
where <B><I>e</I><SUB><I>r</I></SUB></B> is column <B><I>r</I></B> of <B><I>I</I></B>. It turns out that
<!-- MATH
$N_r \Delta_r N_r^T = e_r \delta_r$
-->
<IMG
WIDTH="128" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img244.png"
ALT="$N_r \Delta_r N_r^T = e_r \delta_r$">
and
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\| LDL^T - \hat{\lambda} I \| =
| {\rm error\ in\ } \hat{\lambda}| / \|u\|_{\infty} + ...
\end{displaymath}
-->
<IMG
WIDTH="297" HEIGHT="31" BORDER="0"
SRC="img245.png"
ALT="\begin{displaymath}
\Vert LDL^T - \hat{\lambda} I \Vert =
\vert {\rm error\ in\ } \hat{\lambda}\vert / \Vert u\Vert _{\infty} + ...
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where ... indicates smaller terms and
<!-- MATH
$Tu = \lambda u$
-->
<IMG
WIDTH="70" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img246.png"
ALT="$Tu = \lambda u$">,
<B><I>u</I><SUP><I>T</I></SUP><I>u</I> = 1</B>.
>From the basic gap theorem [<A
HREF="node151.html#parlett">85</A>]
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
|\sin \theta(u,z)| <= O(\epsilon)
) |\hat{\lambda}| / (\|u\|_{\infty}
|\hat{\lambda} - \hat{\mu}| ) + ...
\end{displaymath}
-->
<IMG
WIDTH="333" HEIGHT="31" BORDER="0"
SRC="img247.png"
ALT="\begin{displaymath}
\vert\sin \theta(u,z)\vert <= O(\epsilon)
) \vert\hat{\lamb...
...t u\Vert _{\infty}
\vert\hat{\lambda} - \hat{\mu}\vert ) + ...
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img248.png"
ALT="$\hat{\mu}$">
is <IMG
WIDTH="15" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img241.png"
ALT="$\hat{\lambda}$">'s neighbor in the shifted spectrum.
Given
this nice bound the algorithm computes <B><I>z</I></B> for all <IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
such that the
relative gap
<!-- MATH
$|\lambda - \mu|/|\lambda - s| > 10^{-3}$
-->
<IMG
WIDTH="173" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img249.png"
ALT="$\vert\lambda - \mu\vert/\vert\lambda - s\vert > 10^{-3}$">.
These <B><I>z</I></B>'s have an
error
that is <IMG
WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img250.png"
ALT="$O(\epsilon)$">.
<P>
The procedure described above is repeated for any eigenvalues that
remain without eigenvectors. It can be shown that all the computed
<B><I>z</I></B>'s are very close to eigenvectors of small relative perturbations of
one global Cholesky factorization <B><I>GG</I><SUP><I>T</I></SUP></B> of a translate <IMG
WIDTH="58" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img251.png"
ALT="$T - \sigma I$">
of <B><I>T</I></B>. A key
component of the algorithm is the use of recently discovered
differential qd algorithms to ensure that the twisted factorizations
described above are computed without ever forming the indicated
matrix products such as <B><I>LDL</I><SUP><I>T</I></SUP></B> [<A
HREF="node151.html#fernandoparlett">51</A>].
<P>
For computing the eigenvalues and eigenvectors of a Hessenberg
matrix--or rather for computing its Schur factorization-- yet another
flavor of block algorithm has been developed: a <B>multishift</B>
<B><I>QR</I></B> iteration<A NAME="8019"></A>
[<A
HREF="node151.html#baidemmel">9</A>]. Whereas the traditional EISPACK routine
HQR<A NAME="8021"></A> uses a double shift (and the corresponding complex
routine COMQR<A NAME="8022"></A>
uses a single shift), the multishift algorithm uses block shifts of
higher order. It has been found that often the total number of operations
<EM>decreases</EM> as the order of shift is increased until a minimum
is reached typically between 4 and 8; for higher orders the number of
operations increases quite rapidly. On many machines
the speed of applying the shift
increases steadily with the order, and the optimum order of shift is
typically in the range 8-16. Note however that the performance can be
very sensitive to the choice of the order of shift; it also depends on
the numerical properties of the matrix. Dubrulle [<A
HREF="node151.html#dubrulle">49</A>] has
studied the practical performance of the algorithm, while Watkins and
Elsner [<A
HREF="node151.html#watkinselsner">101</A>] discuss its theoretical asymptotic convergence
rate.
<P>
Finally, we note that research into block algorithms for symmetric and
nonsymmetric eigenproblems continues
[<A
HREF="node151.html#baidemmel92a">11</A>,<A
HREF="node151.html#hussledermantsaozhang93">68</A>],
and future versions of LAPACK will be updated to contain the best algorithms
available.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5141"
HREF="node71.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5135"
HREF="node67.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5131"
HREF="node69.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5137"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5139"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5142"
HREF="node71.html">LAPACK Benchmark</A>
<B> Up:</B> <A NAME="tex2html5136"
HREF="node67.html">Examples of Block Algorithms</A>
<B> Previous:</B> <A NAME="tex2html5132"
HREF="node69.html">QR Factorization</A>
  <B> <A NAME="tex2html5138"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5140"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|